A generalized G-function for the Quantum Rabi Model

被引:31
作者
Braak, Daniel [1 ,2 ]
机构
[1] Univ Augsburg, EP VI, D-86135 Augsburg, Germany
[2] Univ Augsburg, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany
关键词
quantum optics; integrable systems; Schrodinger operators; HAMILTONIANS; SPACE;
D O I
10.1002/andp.201200270
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analytical solution of the quantum Rabi model is based on a transcendental function G(x), the zeros of which determine the eigenenergies. G(x) is generalized here to a function G(x;z), which allows a much better numerical control of the high-energy part of the spectrum by an appropriate choice of the complex parameter z. Additionally, it is shown that all zeros of G(x) correspond to eigenvalues of the Hamiltonian as well as the zeros of G(x;z) for imaginary z.
引用
收藏
页码:L23 / L28
页数:6
相关论文
共 23 条
[1]   Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics [J].
Ballester, D. ;
Romero, G. ;
Garcia-Ripoll, J. J. ;
Deppe, F. ;
Solano, E. .
PHYSICAL REVIEW X, 2012, 2 (02)
[3]   Integrability of the Rabi Model [J].
Braak, D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (10)
[4]   Deep Strong Coupling Regime of the Jaynes-Cummings Model [J].
Casanova, J. ;
Romero, G. ;
Lizuain, I. ;
Garcia-Ripoll, J. J. ;
Solano, E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[5]   Coherent dynamics of a flux qubit coupled to a harmonic oscillator [J].
Chiorescu, I ;
Bertet, P ;
Semba, K ;
Nakamura, Y ;
Harmans, CJPM ;
Mooij, JE .
NATURE, 2004, 431 (7005) :159-162
[6]  
Coddington E. A., 1997, LINEAR ORDINARY DIFF, P26
[7]   Bogoliubov transformations and exact isolated solutions for simple nonadiabatic Hamiltonians [J].
Emary, C ;
Bishop, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3916-3926
[8]   COMPUTATION ASPECTS OF 3-TERM RECURRENCE RELATIONS [J].
GAUTSCHI, W .
SIAM REVIEW, 1967, 9 (01) :24-&
[9]  
Ince E. L., 1956, ORDINARY DIFFERENTIA, P357
[10]   COMPARISON OF QUANTUM AND SEMICLASSICAL RADIATION THEORIES WITH APPLICATION TO BEAM MASER [J].
JAYNES, ET ;
CUMMINGS, FW .
PROCEEDINGS OF THE IEEE, 1963, 51 (01) :89-+