On 2-arc-transitive Cayley graphs of Abelian groups

被引:9
作者
Potocnik, P [1 ]
机构
[1] Univ Ljubljana, IMFM, Oddelek Matemat, SI-1000 Ljubljana, Slovenia
关键词
vertex-transitive graph; Cayley graph; 2-arc-transitive graph; permutation group; Schur ring;
D O I
10.1016/S0012-365X(01)00068-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-arc in a graph X is a sequence of three distinct vertices of graph X where the first two and the last two are adjacent. A graph X is 2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs of X. Some properties of 2-arc-transitive Cayley graphs of Abelian groups are considered. It is also proved that the set of generators of a 2-arc-transitive Cayley graph of an Abelian group which is not a circulant contains no elements of odd order. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:417 / 421
页数:5
相关论文
共 4 条
  • [1] A classification of 2-arc-transitive circulants
    Alspach, B
    Conder, MDE
    Marusic, D
    Xu, MY
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (02) : 83 - 86
  • [2] ON FINITE AFFINE 2-ARC TRANSITIVE GRAPHS
    IVANOV, AA
    PRAEGER, CE
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) : 421 - 444
  • [3] MARUSIC D, UNPUB CLASSIFYING 2
  • [4] Wielandt H., 1964, Finite Permutation Groups