A meta-modeling approach for spatio-temporal uncertainty and sensitivity analysis: an application for a cellular automata-based Urban growth and land-use change model

被引:32
|
作者
Salap-Ayca, Seda [1 ,2 ]
Jankowski, Piotr [1 ,3 ]
Clarke, Keith C. [2 ]
Kyriakidis, Phaedon C. [2 ,4 ]
Nara, Atsushi [1 ]
机构
[1] San Diego State Univ, Dept Geog, San Diego, CA 92182 USA
[2] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[3] Adam Mickiewicz Univ, Inst Geoecol & Geoinformat, Pozna, Poland
[4] Cyprus Univ Technol, Dept Civil Engn & Geomat, Lemesos, Cyprus
基金
美国国家科学基金会;
关键词
Land-use change; urban growth; sensitivity analysis; meta-modeling; polynomial chaos expansion; POLYNOMIAL CHAOS EXPANSIONS; AGENT-BASED MODEL; MULTICRITERIA EVALUATION; SCALE SENSITIVITY; PROPAGATION; MANAGEMENT; VARIANCE; DYNAMICS; BEHAVIOR; SYSTEMS;
D O I
10.1080/13658816.2017.1406944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a computationally efficient meta-modeling approach to spatially explicit uncertainty and sensitivity analysis in a cellular automata (CA) urban growth and land-use simulation model. The uncertainty and sensitivity of the model parameters are approximated using a meta-modeling method called polynomial chaos expansion (PCE). The parameter uncertainty and sensitivity measures obtained with PCE are compared with traditional Monte Carlo simulation results. The meta-modeling approach was found to reduce the number of model simulations necessary to arrive at stable sensitivity estimates. The quality of the results is comparable to the full-order modeling approach, which is computationally costly. The study shows that the meta-modeling approach can significantly reduce the computational effort of carrying out spatially explicit uncertainty and sensitivity analysis in the application of spatio-temporal models.
引用
收藏
页码:637 / 662
页数:26
相关论文
共 50 条
  • [1] Cellular Automata-Based Spatial Dynamic Modeling for Analyzing Urban Land Use Change
    Rossetti, Lucimari A. F. G.
    Pinto, Sergio dos Anjos F.
    de Almeida, Claudia Maria
    2013 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2013, : 288 - 291
  • [2] Analysis of the Effectiveness of Urban Land-Use-Change Models Based on the Measurement of Spatio-Temporal, Dynamic Urban Growth: A Cellular Automata Case Study
    Liu, Yilun
    Hu, Yueming
    Long, Shaoqiu
    Liu, Luo
    Liu, Xiaoping
    SUSTAINABILITY, 2017, 9 (05):
  • [3] A cellular automata-based approach for spatio-temporal modeling of the city center as a complex system: The case of Kastamonu, Turkiye
    Isinkaralar, Oznur
    Varol, Cigdem
    CITIES, 2023, 132
  • [4] Spatio-temporal multinomial autologistic modeling of land-use change: A parcel-level approach
    Tepe, Emre
    Guldmann, Jean-Michel
    ENVIRONMENT AND PLANNING B-URBAN ANALYTICS AND CITY SCIENCE, 2020, 47 (03) : 473 - 488
  • [5] Spatio-temporal effects of urban rail transit on complex land-use change
    Tan Z.
    Li S.
    Li X.
    Liu X.
    Chen Y.
    Li W.
    Li, Shaoyin (lsy_0130@163.com), 1600, Science Press (72): : 850 - 862
  • [6] SPATIO-TEMPORAL CELLULAR AUTOMATA-BASED FILTERING FOR IMAGE SEQUENCE DENOISING: APPLICATION TO FLUOROSCOPIC SEQUENCES
    Priego, Blanca
    Veganzones, Miguel A.
    Chanussot, Jocelyn
    Amiot, Carole
    Prieto, Abraham
    Duro, Richard
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 548 - 552
  • [7] A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing
    Feng, Yongjiu
    Liu, Yan
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (03) : 449 - 466
  • [8] Replication of spatio-temporal land use patterns at three levels of aggregation by an urban cellular automata
    Dietzel, C
    Clarke, KC
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 523 - 532
  • [9] A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation
    Xing, Weiran
    Qian, Yuehui
    Guan, Xuefeng
    Yang, Tingting
    Wu, Huayi
    COMPUTERS & GEOSCIENCES, 2020, 137 (137)
  • [10] A novel spatio-temporal cellular automata model coupling partitioning with CNN-LSTM to urban land change simulation
    Zhou, Ye
    Huang, Chen
    Wu, Tao
    Zhang, Mingyue
    ECOLOGICAL MODELLING, 2023, 482