Using high-resolution LiDAR data to quantify the three-dimensional structure of vegetation in urban green space

被引:35
作者
Caynes, Rhiannon J. C. [1 ]
Mitchell, Matthew G. E. [1 ]
Wu, Dan Sabrina [1 ]
Johansen, Kasper [1 ]
Rhodes, Jonathan R. [1 ]
机构
[1] Univ Queensland, Sch Geog Planning & Environm Management, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Vegetation vertical structure; Vegetation spatial structure; Urban parks; LiDAR; Brisbane; Australia; Remote sensing; AIRBORNE LIDAR; HABITAT FRAGMENTATION; SPECIES-DIVERSITY; BIODIVERSITY CONSERVATION; ECOSYSTEM SERVICES; FOREST STRUCTURE; LAND-USE; LANDSCAPE; COVER; PARKS;
D O I
10.1007/s11252-016-0571-z
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The spatial arrangement and vertical structure of vegetation in urban green spaces are key factors in determining the types of benefits that urban parks provide to people. This includes opportunities for recreation, spiritual fulfilment and biodiversity conservation. However, there has been little consideration of how the fine-scale spatial and vertical structure of vegetation is distributed in urban parks, primarily due to limitations in methods for doing so. We addressed this gap by developing a method using Light Detection and Ranging (LiDAR) data to map, at a fine resolution, tree cover, vegetation spatial arrangement, and vegetation vertical structure. We then applied this method to urban parks in Brisbane, Australia. We found that parks varied mainly in their amount of tree cover and its spatial arrangement, but also in vegetation vertical structure. Interestingly, the vertical structure of vegetation was largely independent of its cover and spatial arrangement. This suggests that vertical structure may be being managed independently to tree cover to provide different benefits across urban parks with different levels of tree cover. Finally, we were able to classify parks into three distinct classes that explicitly account for both the spatial and vertical structure of tree cover. Our approach for mapping the three-dimensional vegetation structure of urban green space provides a much more nuanced and functional description of urban parks than has previously been possible. Future research is now needed to quantify the relationships between vegetation structure and the actual benefits people derive from urban green space.
引用
收藏
页码:1749 / 1765
页数:17
相关论文
共 71 条
[1]   Spatial covariance between biodiversity and other ecosystem service priorities [J].
Anderson, Barbara J. ;
Armsworth, Paul R. ;
Eigenbrod, Felix ;
Thomas, Chris D. ;
Gillings, Simon ;
Heinemeyer, Andreas ;
Roy, David B. ;
Gaston, Kevin J. .
JOURNAL OF APPLIED ECOLOGY, 2009, 46 (04) :888-896
[2]  
[Anonymous], 14 AUSTR REM SENS PH
[3]  
[Anonymous], 2010, LANG ENV STAT COMP
[4]  
[Anonymous], 2014, BRISB CIT PLAN 2014
[5]   A new approach to the identification of regional clusters: hierarchical clustering on principal components [J].
Argueelles, M. ;
Benavides, C. ;
Fernandez, I. .
APPLIED ECONOMICS, 2014, 46 (21) :2511-2519
[6]   Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery [J].
Armston, John D. ;
Denham, Robert J. ;
Danaher, Tim J. ;
Scarth, Peter F. ;
Moffiet, Trevor N. .
JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
[7]  
Australian Bureau of Statistics, 2015, NAT REG PROF BRISB
[8]   Who benefits from access to green space? A case study from Sheffield, UK [J].
Barbosa, Olga ;
Tratalos, Jamie A. ;
Armsworth, Paul R. ;
Davies, Richard G. ;
Fuller, Richard A. ;
Johnson, Pat ;
Gaston, Kevin J. .
LANDSCAPE AND URBAN PLANNING, 2007, 83 (2-3) :187-195
[9]  
Bjerke Tore, 2006, Urban Forestry & Urban Greening, V5, P35, DOI 10.1016/j.ufug.2006.01.006
[10]   Ecosystem services in urban areas [J].
Bolund, P ;
Hunhammar, S .
ECOLOGICAL ECONOMICS, 1999, 29 (02) :293-301