SUBGROUPS OF FINITE INDEX IN (2, 3, n)-TRIANGLE GROUPS

被引:1
作者
Stothers, W. Wilson [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
SYMMETRIC-GROUPS; GENERATORS;
D O I
10.1017/S0017089512000298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer n >= 7, let Delta(n) denote the (2, 3, n)-triangle group, and let M(n) be the positive integer determined by the conditions that Delta(n) has a subgroup of index m for all m >= M(n), but no subgroup of index M(n) - 1. The main purpose of the paper is to obtain information (bounds, in some cases explicit values) concerning the function M(n) (cf. Theorem 1). We also show that Delta(n) is replete (i.e., has a subgroup of index m for every integer m >= 1) if, and only if, n is divisible by 20 or by 30 (see Theorem 2).
引用
收藏
页码:693 / 714
页数:22
相关论文
共 10 条
[1]   GENERATORS FOR ALTERNATING AND SYMMETRIC-GROUPS [J].
CONDER, MDE .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 22 (AUG) :75-86
[2]   MORE ON GENERATORS FOR ALTERNATING AND SYMMETRIC-GROUPS [J].
CONDER, MDE .
QUARTERLY JOURNAL OF MATHEMATICS, 1981, 32 (126) :137-163
[3]   Parity patterns associated with lifts of Hecke groups [J].
Krattenthaler, C. ;
Mueller, Thomas W. .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2008, 78 (01) :99-147
[4]  
Lehner J., 1964, AMS SURVEYS, V8
[5]   Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks [J].
Muller, Thomas W. ;
Schlage-Puchta, Jan-Christoph .
ADVANCES IN MATHEMATICS, 2007, 213 (02) :919-982
[6]  
Ree R., 1971, J. Comb. Theory Ser. A, V10, P174, DOI [10.1016/0097-3165(71)90020-3, DOI 10.1016/0097-3165(71)90020-3]
[7]  
Singerman D, 1970, B LOND MATH SOC, V2, P319, DOI 10.1112/blms/2.3.319
[8]  
Stothers W. W., SUBGROUPS 2 3 UNPUB
[9]   SUBGROUPS OF (2,3,7) TRIANGLE GROUP [J].
STOTHERS, WW .
MANUSCRIPTA MATHEMATICA, 1977, 20 (04) :323-334
[10]   IMPOSSIBLE SPECIFICATIONS FOR MODULAR GROUP [J].
STOTHERS, WW .
MANUSCRIPTA MATHEMATICA, 1974, 13 (04) :415-428