Speciation of adsorbed yttrium and rare earth elements on oxide surfaces

被引:54
|
作者
Piasecki, Wojciech [1 ]
Sverjensky, Dimitri A. [1 ]
机构
[1] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
关键词
D O I
10.1016/j.gca.2008.05.049
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The distribution of yttrium and the rare earth elements (YREE) between natural waters and oxide mineral surfaces depends on adsorption reactions, which in turn depend on the specific way in which YREE are coordinated to mineral surfaces. Recent X-ray studies have established that Y3+ is adsorbed to the rutile (110) surface as a distinctive tetranuclear species. However, the hydrolysis state of the adsorbed cation is not known from experiment. Previous surface complexation models of YREE adsorption have suggested two to four cation hydrolysis states coexisting on oxide surfaces. In the present study, we investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition to rutile using the extended triple-layer surface complexation model. The reaction producing a hydrolyzed tetranuclear surface species 4> SOH + M3+ + 2H(2)O = (> SOH)(2)(> SO-)(2-)M(OH)(2)(+) + 4H(+) was found to account for a significant fraction of the adsorbed Y3+, La3+, Nd3+, Gd3+, and Yb3+ on rutile, hematite, alumina and silica over wide ranges of pH and ionic strength. Where adsorption data were available as a function of surface coverage for hematite and silica, an additional reaction involving a mononuclear species could be used to account for the higher surface coverages. However, it is also possible that some of the higher surface coverage data refer to surface precipitation rather than adsorption. The results of the present study provide an internally consistent basis for describing YREE adsorption which could be used to investigate more complex systems in which YREE compete both in aqueous solution and on mineral surfaces with alkaline earths and ligands such as carbonate, sulfate, chloride and organic species, in order to build a predictive adsorption model applicable to natural waters. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3964 / 3979
页数:16
相关论文
共 50 条
  • [1] Oxygen adsorbed on rare earth surfaces
    Getzlaff, M.
    Paul, J.
    Bansmann, J.
    Ostertag, Ch.
    Fecher, G.H.
    Schoenhense, G.
    Surface Science, 1996, 352-354 : 123 - 127
  • [2] Oxygen adsorbed on rare earth surfaces
    Getzlaff, M
    Paul, J
    Bansmann, J
    Ostertag, C
    Fecher, GH
    Schonhense, G
    SURFACE SCIENCE, 1996, 352 : 123 - 127
  • [3] Speciation of yttrium and the rare earth elements in seawater: Review of a 20-year analytical journey
    Schijf, Johan
    Byrne, Robert H.
    CHEMICAL GEOLOGY, 2021, 584
  • [4] METHACRYLATES OF RARE-EARTH ELEMENTS AND YTTRIUM
    BIRYULINA, VN
    CHUPAKHINA, RA
    SEREBRENNIKOV, VV
    ZHURNAL OBSHCHEI KHIMII, 1981, 51 (07): : 1467 - 1470
  • [5] Speciation Analysis of Rare Earth Elements in Soil
    Guo Peng-Ran
    Jia Xiao-Yu
    Duan Tai-Cheng
    Zhang Yi-Ming
    Xu Tao
    Chen Hang-Ting
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2008, 36 (11) : 1483 - 1487
  • [6] Speciation of rare earth elements and yttrium (REY) in coal fly ashes (CFAs) and implications for REY extractability
    Liu, Pan
    Huang, Rixiang
    Tang, Yuanzhi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] Determination of Trace Impurities of Rare Earth Elements in High Purity Yttrium Oxide by ICPMS
    刘晶磊
    童迎东
    章新泉
    Journal of Rare Earths, 1995, (01) : 52 - 57
  • [8] Determination of trace impurities of rare earth elements in high purity yttrium oxide by ICPMS
    Liu, Jinglei
    Tong, Yingdong
    Zhang, Xinquan
    Journal of Rare Earths, 1995, 13 (01): : 52 - 57
  • [9] THE CYCLOPENTADIENIDES OF SCANDIUM, YTTRIUM AND SOME RARE EARTH ELEMENTS
    BIRMINGHAM, JM
    WILKINSON, G
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1956, 78 (01) : 42 - 44
  • [10] THE BASICITY CHARACTERISTICS OF SCANDIUM, YTTRIUM, AND THE RARE EARTH ELEMENTS
    MOELLER, T
    KREMERS, HE
    CHEMICAL REVIEWS, 1945, 37 (01) : 97 - 159