Growth-complexity spectrum of some discrete dynamical systems

被引:25
作者
Abarenkova, N
d'Auriac, JCA
Boukraa, S
Maillard, JM
机构
[1] LPTHE, F-75252 Paris, France
[2] Ctr Rech Tres Basses Temp, F-38042 Grenoble, France
[3] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
[4] Univ Blida, Inst Aeronaut, Blida, Algeria
来源
PHYSICA D | 1999年 / 130卷 / 1-2期
关键词
Arnold complexity; discrete dynamical systems; rational mappings; iteration growth;
D O I
10.1016/S0167-2789(99)00014-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first study the iteration of birational mappings generated by the composition of the matrix inversion and of a permutation of the entries of 3 x 3 matrices, and consider the degree d(n) of the numerators (or denominators) of the corresponding successive rational expressions for the nth iterate. The growth of this degree is (generically) exponential with n: d(n) similar or equal to lambda(n).lambda is called the growth complexity. We introduce a semi-numerical analysis which enables to compute these growth complexities lambda for all the 9! possible birational transformations. These growth complexities correspond to a spectrum of eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated birational, or even rational, transformations yield algebraic values for their growth complexities. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 42
页数:16
相关论文
共 27 条
  • [1] Elliptic curves from finite order recursions or non-involutive permutations for discrete dynamical systems and lattice statistical mechanics
    Abarenkova, N
    d'Auriac, JCA
    Boukraa, S
    Maillard, JM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1998, 5 (03) : 647 - 661
  • [2] Rational dynamical zeta functions for birational transformations
    Abarenkova, N
    d'Auriac, JCA
    Boukraa, S
    Hassani, S
    Maillard, JM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 264 (1-2) : 264 - 293
  • [3] ABARENKOVA N, CHAODYN9806026
  • [4] Alligood K. T., 1997, CHAOS INTRO DYNAMICA
  • [5] [Anonymous], 1993, CHAOS DYNAMICAL SYST
  • [6] ARNOLD V, 1989, PROBLEMS SINGULARITI, P261
  • [7] INFINITE DISCRETE SYMMETRY GROUP FOR THE YANG-BAXTER EQUATIONS - SPIN MODELS
    BELLON, MP
    MAILLARD, JM
    VIALLET, CM
    [J]. PHYSICS LETTERS A, 1991, 157 (6-7) : 343 - 353
  • [8] INFINITE DISCRETE SYMMETRY GROUP FOR THE YANG-BAXTER EQUATIONS - VERTEX MODELS
    BELLON, MP
    MAILLARD, JM
    VIALLET, C
    [J]. PHYSICS LETTERS B, 1991, 260 (1-2) : 87 - 100
  • [9] DETERMINANTAL IDENTITIES ON INTEGRABLE MAPPINGS
    BOUKRAA, S
    MAILLARD, JM
    ROLLET, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (16): : 2157 - 2201
  • [10] ALMOST INTEGRABLE MAPPINGS
    BOUKRAA, S
    MAILLARD, JM
    ROLLET, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (1-2): : 137 - 174