The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%

被引:124
作者
Fan, Qingqing [1 ]
Qin, Zongyi [1 ]
Gao, Shanglin [2 ]
Wu, Yongtao [1 ]
Pionteck, Juergen [2 ]
Maeder, Edith [2 ]
Zhu, Meifang [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Leibniz Inst Polymerforsch Dresden eV, D-01069 Dresden, Germany
关键词
MECHANICAL-PROPERTIES; COMPOSITES; FIBER; FILMS; TRANSPARENT; SILICON;
D O I
10.1016/j.carbon.2012.04.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A noninvasive approach is used to fabricate electronically conductive and flexible polymer fibers by fixing carbon nanotube (CNT) networks as a thin layer on thermoplastic polyurethane (TPU) multifilaments. The anchoring of the CNT layer is achieved by partially embedding or penetrating CNTs from the dispersion into the swollen multifilament surface. Thus a stable and high conductivity (up to 10(2) S/m at 10 wt.% CNT loading) of the resulting CNTs-TPU fibers is realized while the mechanical properties of the TPU multifilament, especially the strain to failure of >1500%, are not affected by increasing the thickness of the CNT layer. Real time analysis of the resistance of the CNTs-TPU fibers during incremental tensile loading tests reveal that the increase of resistance as a function of the strain is attributed to stretching-induced deformation, alignment, and, at high strains, destruction of the conducting network. Moreover, the changes in resistance are highly reversible under cyclic stretching up to a strain deformation of 400%. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4085 / 4092
页数:8
相关论文
共 40 条
[31]   Fatigue resistance of aligned carbon nanotube arrays under cyclic compression [J].
Suhr, J. ;
Victor, P. ;
Sreekala, L. Ci S. ;
Zhang, X. ;
Nalamasu, O. ;
Ajayan, P. M. .
NATURE NANOTECHNOLOGY, 2007, 2 (07) :417-421
[32]   Assembly of conductive Au films on poly(urethane urea) elastomers using a solution-based approach [J].
Supriya, Lakshmi ;
Unal, Serkan ;
Long, Timothy E. ;
Claus, Richard O. .
CHEMISTRY OF MATERIALS, 2006, 18 (10) :2506-2512
[33]   Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks [J].
Thostenson, Erik T. ;
Chou, Tsu-Wei .
NANOTECHNOLOGY, 2008, 19 (21)
[34]   Stretchable electrodes with high conductivity and photo-patternability [J].
Urdaneta, Mario G. ;
Delille, Remi ;
Smela, Elisabeth .
ADVANCED MATERIALS, 2007, 19 (18) :2629-+
[35]   Transparent, conductive carbon nanotube films [J].
Wu, ZC ;
Chen, ZH ;
Du, X ;
Logan, JM ;
Sippel, J ;
Nikolou, M ;
Kamaras, K ;
Reynolds, JR ;
Tanner, DB ;
Hebard, AF ;
Rinzler, AG .
SCIENCE, 2004, 305 (5688) :1273-1276
[36]   The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite [J].
Xiong, Jiawen ;
Zheng, Zhen ;
Qin, Xiumin ;
Li, Ming ;
Li, Huiqing ;
Wang, Xinling .
CARBON, 2006, 44 (13) :2701-2707
[37]   Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes [J].
Yuan, Wei ;
Hu, Liangbing ;
Yu, Zhibin ;
Lam, Tuling ;
Biggs, James ;
Ha, Soon M. ;
Xi, Dongjuan ;
Chen, Bin ;
Senesky, Matthew K. ;
Gruner, George ;
Pei, Qibing .
ADVANCED MATERIALS, 2008, 20 (03) :621-+
[38]   Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes [J].
Zhang, Daihua ;
Ryu, Koungmin ;
Liu, Xiaolei ;
Polikarpov, Evgueni ;
Ly, James ;
Tompson, Mark E. ;
Zhou, Chongwu .
NANO LETTERS, 2006, 6 (09) :1880-1886
[39]   Universal resistivity-strain dependence of carbon nanotube/polymer composites [J].
Zhang, Rui ;
Baxendale, Mark ;
Peijs, Ton .
PHYSICAL REVIEW B, 2007, 76 (19)
[40]   Multi-functional multi-walled carbon nanotube-jute fibres and composites [J].
Zhuang, Rong-Chuan ;
Thi Thu Loan Doan ;
Liu, Jian-Wen ;
Zhang, Jie ;
Gao, Shang-Lin ;
Maeder, Edith .
CARBON, 2011, 49 (08) :2683-2692