Investigation of air plasma generated by surface microdischarge for decellularized porcine aortic valve leaflets modification

被引:5
作者
Lu, Chen [1 ]
Dai, Jinchi [2 ]
Dong, Nianguo [2 ]
Zhu, Yu
Xiong, Zilan [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Cardiovasc Surg, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
biomaterials; decellularized porcine aortic valve leaflet; dielectric barrier discharge; mechanical properties; modification; HEART-VALVE; BIOMATERIALS; SCAFFOLDS;
D O I
10.1002/ppap.202000100
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this study, the surface microdischarge (SMD) device was used to modify the mechanical properties of decellularized porcine aortic valve leaflets (DPAVL). It was found that SMD treatment under NOx mode considerably improved the ultimate tensile strength and the Young's modulus of DPAVL, whereas treatment under O-3 mode had no effect. The absorbance band peak at similar to 1,375 cm(-1), measured by Fourier-transform infrared spectrometer, increased with treatment time in the freeze-dried DPAVL group under NOx mode treatment. The microstructure was not destroyed and blood compatibility test showed no toxicity. The reaction between plasma-activated species and the DPAVL and the pH change, other than temperature/UV irradiation, plays a major role. All of the results indicate that cold atmospheric plasma treatment seems to be a potential alternative for DPAVL modification.
引用
收藏
页码:1069 / 1075
页数:7
相关论文
共 29 条
[1]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000746, 10.1161/CIR.0000000000000659]
[2]  
Bouten CVC, 2012, EXPERT REV MED DEVIC, V9, P453, DOI [10.1586/erd.12.43, 10.1586/ERD.12.43]
[3]  
Chernets N, 2015, TISSUE ENG PT A, V21, P300, DOI [10.1089/ten.tea.2014.0039, 10.1089/ten.TEA.2014.0039]
[4]   In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma ( DBD) [J].
Daeschlein, Georg ;
Napp, Matthias ;
von Podewils, Sebastian ;
Lutze, Stine ;
Emmert, Steffen ;
Lange, Anja ;
Klare, Ingo ;
Haase, Hermann ;
Guembel, Denis ;
von Woedtke, Thomas ;
Juenger, Michael .
PLASMA PROCESSES AND POLYMERS, 2014, 11 (02) :175-183
[5]   Plasma in Dentistry: Brief History and Current Status [J].
Gherardi, Matteo ;
Tonini, Riccardo ;
Colombo, Vittorio .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (06) :583-585
[6]   Low temperature plasma biomedicine: A tutorial review [J].
Graves, David B. .
PHYSICS OF PLASMAS, 2014, 21 (08)
[7]   Synergistic Effect of Cold Plasma Treatment and RGD Peptide Coating on Cell Proliferation over Titanium Surfaces [J].
Karaman, Ozan ;
Kelebek, Seyfi ;
Demirci, Emine Afra ;
Ibis, Fatma ;
Ulu, Murat ;
Ercan, Utku Kursat .
TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 15 (01) :13-24
[8]   Effect of cold atmospheric plasmas on bacteria in liquid: The role of gas composition [J].
Kaupe, Julian ;
Tschang, Chen-Yon T. ;
Birk, Florian ;
Coenen, Daniela ;
Thoma, Markus H. ;
Mitic, Slobodan .
PLASMA PROCESSES AND POLYMERS, 2019, 16 (08)
[9]   Fluoropolymer coated alanine films treated by atmospheric pressure plasmas - In comparison with gamma irradiation [J].
Kusano, Yukihiro ;
Bardenshtein, Alexander ;
Morgen, Per .
PLASMA PROCESSES AND POLYMERS, 2018, 15 (03)
[10]   Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine [J].
Laroussi, M. ;
Lu, X. ;
Keidar, M. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (02)