Graphene-Polythiophene Nanocomposite as Novel Supercapacitor Electrode Material

被引:15
作者
Alvi, Farah [1 ]
Basnayaka, Punya A. [2 ]
Ram, Manoj K. [2 ,3 ]
Gomez, Humberto [2 ]
Stefanako, Elias [1 ,3 ]
Goswami, Yogi [3 ,4 ]
Kumar, Ashok [2 ,3 ]
机构
[1] Univ S Florida, Dept Elect Engn, Tampa, FL 33620 USA
[2] Univ S Florida, Dept Mech Engn, Tampa, FL 33620 USA
[3] Univ S Florida, Nanotechnol Educ & Res Ctr, Tampa, FL 33620 USA
[4] Univ S Florida, Chem & Biomed Engn Dept, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
graphene; polythiophene; nanocomposite; capacitance; supercapacitor; charging-discharging; conducting polymer; G-PTh; cyclic voltammetry; CARBON NANOTUBES; ELECTROCHEMICAL SUPERCAPACITOR; PERFORMANCE; POLYMER; COMPOSITE; ENERGY;
D O I
10.14447/jnmes.v15i2.76
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The graphene (G)-polythiophene (PTh) nanocomposite was synthesized by a chemical oxidative polymerization technique and characterized using Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy, Fourier transform Infrared spectroscopy (FTIR), X-ray-diffraction (XRD), Electrochemical Impedance spectroscopy(EIS) and cyclic voltammetry (CV) techniques. The electrochemical properties of G-PTh nanocomposite supercapacitor electrodes were investigated in different electrolytes solutions and a specific discharge capacitance of 154 F/g was estimated from different charge/discharge current cycles. Our proposed research is transformative as the G-conducting polymer based electrode material with unique and excellent properties, such as, high conductivity, wider tunable potential window, high stability of the electrode material in doped form, faster charge transfer rate, and short charging times, that allows the fabrication of high performance supercapacitors for practical applications.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 36 条
[1]   Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor [J].
Alvi, Farah ;
Ram, Manoj K. ;
Basnayaka, Punya A. ;
Stefanakos, Elias ;
Goswami, Yogi ;
Kumar, Ashok .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9406-9412
[2]   A non-aqueous electrolyte-based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes [J].
Amitha, F. Estaline ;
Reddy, A. Leela Mohana ;
Ramaprabhu, S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (03) :725-729
[3]  
An KH, 2001, ADV FUNCT MATER, V11, P387, DOI 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO
[4]  
2-G
[5]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[6]   Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J].
Beaudrouet, E. ;
La Salle, A. Le Gal ;
Guyomard, D. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1240-1248
[7]   Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].
Conway, BE ;
Pell, WG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :637-644
[8]   Performance evaluation of poly 3-(phenylthiophene) derivatives as active materials for electrochemical capacitor applications [J].
Ferraris, JP ;
Eissa, MM ;
Brotherston, ID ;
Loveday, DC .
CHEMISTRY OF MATERIALS, 1998, 10 (11) :3528-3535
[9]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[10]  
Gnanakan S.R.P., 2009, POLYM ADV TECHNOLOGI