(m, n)-Hom-Lie algebras

被引:9
|
作者
Ma, Tianshui [1 ,2 ]
Zheng, Huihui [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Dept Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2018年 / 92卷 / 1-2期
基金
中国博士后科学基金;
关键词
Horn-Lie algebra; monoidal Horn-Yetter Drinfeld category; YETTER-DRINFELD CATEGORIES; QUASI-LIE ALGEBRAS; HOM-HOPF ALGEBRAS; ASSOCIATIVE ALGEBRAS;
D O I
10.5486/PMD.2018.7703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (H, beta) be a monoidal Hom-Hopf algebra, and (A, alpha) an algebra in the (m, n)-Hom-Yetter-Drinfeld category (H) over tilde ((HYD)-Y-H(Z)), where m, n is an element of Z (the set of integers). In this paper, we introduce the notion of (m, n)-Hom-Lie algebra (i.e., Lie algebras in the category (H) over tilde ((HYD)-Y-H(Z))), and then prove that (A, alpha) can give rise to an (m, n)-Hom-Lie algebra with suitable Lie bracket when the braiding T in (H) over tilde ((HYD)-Y-H(Z)) is symmetric on (A, alpha). We also show that if also (A, alpha) is a sum of two (H, beta)-commutative Hom-subalgebras, then [A, A] [A, A] - 0.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 50 条
  • [41] Extensions of hom-Lie algebras in terms of cohomology
    Armakan, Abdoreza R.
    Farhangdoost, Mohammed Reza
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 317 - 328
  • [42] Cohomology and deformations of compatible Hom-Lie algebras
    Das, Apurba
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [43] Regular Hom-Lie structures on incidence algebras
    Fornaroli, Erica Z.
    Khrypchenko, Mykola
    Santulo Jr, Ednei A. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [44] Regular Hom-Lie structures on incidence algebras
    Érica Z. Fornaroli
    Mykola Khrypchenko
    Ednei A. Santulo
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [45] Enveloping algebras for Hom-Lie algebras in Hom-Yetter-Drinfeld categories
    Wang, Shengxiang
    Zhang, Xiaohui
    Guo, Shuangjian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (1-2): : 1 - 31
  • [46] Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    GENERALIZED LIE THEORY IN MATHEMATICS, PHYSICS AND BEYOND, 2009, : 189 - +
  • [47] Complex and Kahler structures on hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1039 - 1056
  • [48] ON SPLIT REGULAR HOM-LIE COLOR ALGEBRAS
    Cao, Yan
    Chen, Liangyun
    COLLOQUIUM MATHEMATICUM, 2017, 146 (01) : 143 - 155
  • [49] Cohomology and deformations for the Heisenberg Hom-Lie algebras
    Alejandra Alvarez, Maria
    Cartes, Francisco
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2209 - 2229
  • [50] On 4-dimensional Hom-Lie Algebras
    Alejandra Alvarez, Maria
    Vanesa Vera, Sonia
    MATHEMATICAL MODELING IN PHYSICAL SCIENCES, IC-MSQUARE 2023, 2024, 446 : 79 - 85