共 50 条
(m, n)-Hom-Lie algebras
被引:9
|作者:
Ma, Tianshui
[1
,2
]
Zheng, Huihui
[1
]
机构:
[1] Henan Normal Univ, Sch Math & Informat Sci, Dept Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Peoples R China
来源:
基金:
中国博士后科学基金;
关键词:
Horn-Lie algebra;
monoidal Horn-Yetter Drinfeld category;
YETTER-DRINFELD CATEGORIES;
QUASI-LIE ALGEBRAS;
HOM-HOPF ALGEBRAS;
ASSOCIATIVE ALGEBRAS;
D O I:
10.5486/PMD.2018.7703
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (H, beta) be a monoidal Hom-Hopf algebra, and (A, alpha) an algebra in the (m, n)-Hom-Yetter-Drinfeld category (H) over tilde ((HYD)-Y-H(Z)), where m, n is an element of Z (the set of integers). In this paper, we introduce the notion of (m, n)-Hom-Lie algebra (i.e., Lie algebras in the category (H) over tilde ((HYD)-Y-H(Z))), and then prove that (A, alpha) can give rise to an (m, n)-Hom-Lie algebra with suitable Lie bracket when the braiding T in (H) over tilde ((HYD)-Y-H(Z)) is symmetric on (A, alpha). We also show that if also (A, alpha) is a sum of two (H, beta)-commutative Hom-subalgebras, then [A, A] [A, A] - 0.
引用
收藏
页码:59 / 78
页数:20
相关论文