ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK

被引:40
作者
Chen, Jin [1 ]
He, Long [2 ]
Wang, Qin [3 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Hubei, Peoples R China
[2] Zhejiang Wanli Univ, Modern Logist Sch, Ningbo 315100, Zhejiang, Peoples R China
[3] Zhejiang Wanli Univ, Coll Big Data & Software Engn, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractal Network; Eccentric Distance; Sierpinski Gasket; Self-Similarity; GRAPH;
D O I
10.1142/S0218348X19500166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eccentric distance sum is concerned with complex networks. To obtain the asymptotic formula of eccentric distance sum on growing Sierpinski networks, we study some nonlinear integral in terms of self-similar measure on the Sierpinski gasket and use the self-similarity of distance and measure to obtain the exact value of this integral.
引用
收藏
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 2010, NETWORKS INTRO, DOI DOI 10.1093/ACPROF:OSO/9780199206650.001.0001
[2]   Computing the eccentric-distance sum for graph operations [J].
Azari, Mandieh ;
Iranmanesh, Ali .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2827-2840
[3]  
Bandt C, 2004, ARAB J SCI ENG, V29, P111
[4]  
BANDT C, 1992, REND CIRC MAT PALE S, V28, P307
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]  
Chan T., 1988, INT J COMPUT MATH, V28, P543
[7]   SCALING OF AVERAGE WEIGHTED RECEIVING TIME ON DOUBLE-WEIGHTED KOCH NETWORKS [J].
Dai, Meifeng ;
Ye, Dandan ;
Hou, Jie ;
Li, Xingyi .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (02)
[8]   Eccentric distance sum: A novel graph invariant for predicting biological and physical properties [J].
Gupta, S ;
Singh, M ;
Madan, AK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :386-401
[9]   Some properties of energy measures on Sierpinski gasket type fractals [J].
Hino, Masanori .
JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (03) :245-263
[10]   THE AVERAGE DISTANCE ON THE SIERPINSKI GASKET [J].
HINZ, AM ;
SCHIEF, A .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) :129-138