The Inverse Voronoi Problem in Graphs II: Trees

被引:2
|
作者
Bonnet, Edouard [1 ]
Cabello, Sergio [2 ,5 ]
Mohar, Bojan [3 ]
Perez-Roses, Hebert [4 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, ENS Lyon, CNRS,LIP UMR, Lyon, France
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
[4] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona, Spain
[5] IMFM, Ljubljana, Slovenia
基金
加拿大自然科学与工程研究理事会;
关键词
Voronoi diagram in graphs; Inverse Voronoi problem; Trees; Applications of binary search trees; Dynamic programming in trees; Lower bounds;
D O I
10.1007/s00453-020-00774-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the inverse Voronoi diagram problem in trees: given a tree T with positive edge-lengths and a collection U of subsets of vertices of V(T), decide whether U is a Voronoi diagram in T with respect to the shortest-path metric. We show that the problem can be solved in O(N + n log(2) n) time, where n is the number of vertices in T and N = n + Sigma(U is an element of U) vertical bar U vertical bar is the size of the description of the input. We also provide a lower bound of Omega(n log n) time for trees with n vertices.
引用
收藏
页码:1165 / 1200
页数:36
相关论文
共 50 条
  • [1] The Inverse Voronoi Problem in Graphs II: Trees
    Édouard Bonnet
    Sergio Cabello
    Bojan Mohar
    Hebert Pérez-Rosés
    Algorithmica, 2021, 83 : 1165 - 1200
  • [2] The Inverse Voronoi Problem in Graphs I: Hardness
    Édouard Bonnet
    Sergio Cabello
    Bojan Mohar
    Hebert Pérez-Rosés
    Algorithmica, 2020, 82 : 3018 - 3040
  • [3] The Inverse Voronoi Problem in Graphs I: Hardness
    Bonnet, Edouard
    Cabello, Sergio
    Mohar, Bojan
    Perez-Roses, Hebert
    ALGORITHMICA, 2020, 82 (10) : 3018 - 3040
  • [4] The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample
    Barrett, Wayne
    Hall, H. Tracy
    Loewy, Raphael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1147 - 1191
  • [5] Boundary spectral inverse problem on a class of graphs (trees) by the BC method
    Belishev, MI
    INVERSE PROBLEMS, 2004, 20 (03) : 647 - 672
  • [6] The weighted farthest color Voronoi diagram on trees and graphs
    Hurtado, F
    Klein, R
    Langetepe, E
    Sacristán, V
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 27 (01): : 13 - 26
  • [7] INVERSE PROBLEMS FOR QUANTUM TREES II: RECOVERING MATCHING CONDITIONS FOR STAR GRAPHS
    Avdonin, Sergei
    Kurasov, Pavel
    Nowaczyk, Marlena
    INVERSE PROBLEMS AND IMAGING, 2010, 4 (04) : 579 - 598
  • [8] THE COMBINATORIAL INVERSE EIGENVALUE PROBLEM II: ALL CASES FOR SMALL GRAPHS
    Barrett, Wayne
    Nelson, Curtis
    Sinkovic, John
    Yang, Tianyi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 742 - 778
  • [9] Inverse booking problem: Inverse chromatic number problem in interval graphs
    Chung, Yerim
    Culus, Jean-Francois
    Demange, Marc
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 4921 : 180 - +
  • [10] ON AN EDGE RANKING PROBLEM OF TREES AND GRAPHS
    IYER, AV
    RATLIFF, HD
    VIJAYAN, G
    DISCRETE APPLIED MATHEMATICS, 1991, 30 (01) : 43 - 52