High-dimensional sign-constrained feature selection and grouping

被引:0
|
作者
Qin, Shanshan [1 ]
Ding, Hao [1 ]
Wu, Yuehua [1 ]
Liu, Feng [2 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW 2007, Australia
基金
加拿大自然科学与工程研究理事会;
关键词
Difference convex programming; Feature grouping; Feature selection; High-dimensional; Non-negative; NONNEGATIVE LEAST-SQUARES; VARIABLE SELECTION; ADAPTIVE LASSO; REGRESSION; LIKELIHOOD; RECOVERY; MODELS; PATH;
D O I
10.1007/s10463-020-00766-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a non-negative feature selection/feature grouping (nnFSG) method for general sign-constrained high-dimensional regression problems that allows regression coefficients to be disjointly homogeneous, with sparsity as a special case. To solve the resulting non-convex optimization problem, we provide an algorithm that incorporates the difference of convex programming, augmented Lagrange and coordinate descent methods. Furthermore, we show that the aforementioned nnFSG method recovers the oracle estimate consistently, and that the mean-squared errors are bounded. Additionally, we examine the performance of our method using finite sample simulations and applying it to a real protein mass spectrum dataset.
引用
收藏
页码:787 / 819
页数:33
相关论文
共 50 条
  • [31] Feature Selection for High-Dimensional Data: The Issue of Stability
    Pes, Barbara
    2017 IEEE 26TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES - INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2017, : 170 - 175
  • [32] Hybrid Feature Selection for High-Dimensional Manufacturing Data
    Sun, Yajuan
    Yu, Jianlin
    Li, Xiang
    Wu, Ji Yan
    Lu, Wen Feng
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [33] A hybrid feature selection method for high-dimensional data
    Taheri, Nooshin
    Nezamabadi-pour, Hossein
    2014 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2014, : 141 - 145
  • [34] Clustering high-dimensional data via feature selection
    Liu, Tianqi
    Lu, Yu
    Zhu, Biqing
    Zhao, Hongyu
    BIOMETRICS, 2023, 79 (02) : 940 - 950
  • [35] A hybrid feature selection scheme for high-dimensional data
    Ganjei, Mohammad Ahmadi
    Boostani, Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [36] Preconditioning for feature selection and regression in high-dimensional problems'
    Paul, Debashis
    Bair, Eric
    Hastie, Trevor
    Tibshirani, Robert
    ANNALS OF STATISTICS, 2008, 36 (04): : 1595 - 1618
  • [37] On the scalability of feature selection methods on high-dimensional data
    Bolon-Canedo, V.
    Rego-Fernandez, D.
    Peteiro-Barral, D.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (02) : 395 - 442
  • [38] Evaluating Feature Selection Robustness on High-Dimensional Data
    Pes, Barbara
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 235 - 247
  • [39] Efficient Learning and Feature Selection in High-Dimensional Regression
    Ting, Jo-Anne
    D'Souza, Aaron
    Vijayakumar, Sethu
    Schaal, Stefan
    NEURAL COMPUTATION, 2010, 22 (04) : 831 - 886
  • [40] Feature selection for classifying high-dimensional numerical data
    Wu, YM
    Zhang, AD
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 251 - 258