Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network

被引:40
作者
Gomez, Pablo [1 ]
Semmler, Marion [1 ]
Schuetzenberger, Anne [1 ]
Bohr, Christopher [2 ]
Doellinger, Michael [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Univ Hosp Erlangen, Div Phoniatr & Pediat Audiol, Dept Otorhinolaryngol Head & Neck Surg, Waldstr 1, D-91054 Erlangen, Germany
[2] Univ Regensburg, Univ Hosp Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93053 Regensburg, Germany
关键词
Convolutional neural network; Endoscopy; High-speed video; Image enhancement; Image processing; VOCAL FOLD VIBRATIONS; QUALITY ASSESSMENT; VOICE ASSESSMENT; REAL-TIME; RECONSTRUCTION; PREVALENCE;
D O I
10.1007/s11517-019-01965-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Laryngeal endoscopy is one of the primary diagnostic tools for laryngeal disorders. The main techniques are videostroboscopy and lately high-speed video endoscopy. Unfortunately, due to the restricting anatomy of the larynx and technical limitations of the recording equipment, many videos suffer from insufficient illumination, which complicates clinical examination and analysis. This work presents an approach to enhance low-light images from high-speed video endoscopy using a convolutional neural network. We introduce a new technique to generate realistically darkened training samples using Perlin noise. Extensive data augmentation is employed to cope with the limited training data allowing training with just 55 videos. The approach is compared against four state-of-the-art low-light enhancement methods and statistically significantly outperforms each on a no-reference (NIQE) and two full-reference (PSNR, SSIM) image quality metrics. The presented approach can be run on consumer-grade hardware and is thereby directly applicable in a clinical context. It is likely transferable to similar techniques such as videostroboscopy.
引用
收藏
页码:1451 / 1463
页数:13
相关论文
共 55 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]   Glottal Gap tracking by a continuous background modeling using inpainting [J].
Andrade-Miranda, Gustavo ;
Ignacio Godino-Llorente, Juan .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (12) :2123-2141
[3]  
[Anonymous], 2002, CURR OPIN OTOLARYNGO
[4]   A Histogram Modification Framework and Its Application for Image Contrast Enhancement [J].
Arici, Tarik ;
Dikbas, Salih ;
Altunbasak, Yucel .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (09) :1921-1935
[5]   Redefine statistical significance [J].
Benjamin, Daniel J. ;
Berger, James O. ;
Johannesson, Magnus ;
Nosek, Brian A. ;
Wagenmakers, E. -J. ;
Berk, Richard ;
Bollen, Kenneth A. ;
Brembs, Bjoern ;
Brown, Lawrence ;
Camerer, Colin ;
Cesarini, David ;
Chambers, Christopher D. ;
Clyde, Merlise ;
Cook, Thomas D. ;
De Boeck, Paul ;
Dienes, Zoltan ;
Dreber, Anna ;
Easwaran, Kenny ;
Efferson, Charles ;
Fehr, Ernst ;
Fidler, Fiona ;
Field, Andy P. ;
Forster, Malcolm ;
George, Edward I. ;
Gonzalez, Richard ;
Goodman, Steven ;
Green, Edwin ;
Green, Donald P. ;
Greenwald, Anthony ;
Hadfield, Jarrod D. ;
Hedges, Larry V. ;
Held, Leonhard ;
Ho, Teck Hua ;
Hoijtink, Herbert ;
Hruschka, Daniel J. ;
Imai, Kosuke ;
Imbens, Guido ;
Ioannidis, John P. A. ;
Jeon, Minjeong ;
Jones, James Holland ;
Kirchler, Michael ;
Laibson, David ;
List, John ;
Little, Roderick ;
Lupia, Arthur ;
Machery, Edouard ;
Maxwell, Scott E. ;
McCarthy, Michael ;
Moore, Don ;
Morgan, Stephen L. .
NATURE HUMAN BEHAVIOUR, 2018, 2 (01) :6-10
[6]   Prevalence and Occupation of Patients Presenting With Dysphonia in the United States [J].
Benninger, Michael S. ;
Holy, Chantal E. ;
Bryson, Paul C. ;
Milstein, Claudio F. .
JOURNAL OF VOICE, 2017, 31 (05) :594-600
[7]   The Prevalence of Voice Problems Among Adults in the United States [J].
Bhattacharyya, Neil .
LARYNGOSCOPE, 2014, 124 (10) :2359-2362
[8]  
Blau Yochai, 2017, ARXIV171106077
[9]   Contextual and Variational Contrast Enhancement [J].
Celik, Turgay ;
Tjahjadi, Tardi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) :3431-3441
[10]   Learning to See in the Dark [J].
Chen, Chen ;
Chen, Qifeng ;
Xu, Jia ;
Koltun, Vladlen .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3291-3300