Classification of proper teleparallel conformal symmetry of spherically symmetric static spacetimes using diagonal tetrads

被引:1
作者
Qureshi, Muhammad Amer [1 ]
Shabbir, Ghulam [2 ]
Mahomed, K. S. [3 ]
Aziz, Taha [4 ]
机构
[1] King Fahd Univ Petr & Minerals, Coll Gen Studies, PYP Math Dept, Dhahran, Saudi Arabia
[2] GIK Inst Engn Sci & Technol, Fac Engn Sci, Swabi, Kpk, Pakistan
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, South Africa
[4] King Fahd Univ Petr & Minerals, Dammam Community Coll, Dept Math, Dhahran, Saudi Arabia
关键词
Conformal vector fields; teleparallel theory; Weitzenbock geometry; direct integration technique; diagonal tetrads; KILLING VECTOR-FIELDS; BIANCHI TYPE-I; SCALAR FIELD; TIMES; ENERGY; TRANSFORMATIONS;
D O I
10.1142/S0217732320502326
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study proper teleparallel conformal vector fields in spherically symmetric static spacetimes. The main objective of this paper is to present the classification for the above-mentioned spacetimes. The problem has been examined by two methods: direct integration technique and diagonal tetrads. We show that the spherically symmetric static spacetimes do not admit proper teleparallel conformal vector field, so are actually the teleparallel killing vector fields.
引用
收藏
页数:8
相关论文
共 60 条
[51]   Teleparallel Killing Vectors of Spherically Symmetric Spacetimes [J].
Sharif, M. ;
Majeed, Bushra .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (03) :435-440
[52]   TELEPARALLEL ENERGY-MOMENTUM DISTRIBUTION OF STATIC AXIALLY SYMMETRIC SPACETIMES [J].
Sharif, M. ;
Amir, M. Jamil .
MODERN PHYSICS LETTERS A, 2008, 23 (37) :3167-3177
[53]  
Sharma R., 1989, Int J. Math. Sci., V12, P85
[54]  
So LL, 2005, CHINESE J PHYS, V43, P901
[55]  
Stephani H., 2003, Exact Solutions of Einstein's Field Equations
[56]  
Tolman R. C., 1987, Relativity, Thermodynamics, and Cosmology
[57]  
Trautman A, 1962, GRAVITATION INTRO CU
[58]   The energy of the universe in teleparallel gravity [J].
Vargas, T .
GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (06) :1255-1264
[59]  
Weitzenbock R., 1923, Invarianten Theorie
[60]  
Yano K., 2020, The Theory of Lie Derivatives and its Applications