Ultrathin, lightweight and flexible organic light-emitting devices with a high light outcoupling efficiency

被引:30
作者
Huang, Xiaheng [1 ]
Qu, Yue [1 ]
Fan, Dejiu [1 ]
Kim, Jongchan [1 ]
Forrest, Stephen R. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
关键词
DIODES; EXTRACTION; ENHANCEMENT; EMISSION; THIN;
D O I
10.1016/j.orgel.2019.03.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-efficiency, flexible organic light-emitting diodes (OLEDs) are of interest for display and lighting applications. However, they often suffer from inefficient light extraction, and many outcoupling schemes are incompatible with flexible OLEDs. Here, we demonstrate a corrugated, ultrathin (10 mu m), light-weight (20 g/m(2)), and flexible OLED on a polychloro-p-xylylene (parylene) substrate. A visible-wavelength-scale random corrugation pattern is imprinted on both surfaces of the parylene substrate that efficiently outcouples trapped substrate, waveguide and surface plasmon modes. A green phosphorescent OLED fabricated on a corrugated parylene substrate (CP-OLED) has an external quantum efficiency of 28 +/- 2% compared with 21 +/- 1% for devices on a conventional flat glass substrate. The CP-OLED shows a Lambertian intensity profile whose spectra are unchanged at different viewing angles. The very thin and flexible substrates offer a solution for foldable displays over very small radii for use in mobile devices and medical applications.
引用
收藏
页码:297 / 300
页数:4
相关论文
共 26 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]  
Bak M. J., 1977, IEEE T BIOMED ENG, V121
[3]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[4]   Weak microcavity effects in organic light-emitting devices [J].
Bulovic, V ;
Khalfin, VB ;
Gu, G ;
Burrows, PE ;
Garbuzov, DZ ;
Forrest, SR .
PHYSICAL REVIEW B, 1998, 58 (07) :3730-3740
[5]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[6]   Measuring the efficiency of organic light-emitting devices [J].
Forrest, SR ;
Bradley, DDC ;
Thompson, ME .
ADVANCED MATERIALS, 2003, 15 (13) :1043-1048
[7]   Vacuum-deposited, nonpolymeric flexible organic light-emitting devices [J].
Gu, G ;
Burrows, PE ;
Venkatesh, S ;
Forrest, SR ;
Thompson, ME .
OPTICS LETTERS, 1997, 22 (03) :172-174
[8]  
Han TH, 2012, NAT PHOTONICS, V6, P105, DOI [10.1038/nphoton.2011.318, 10.1038/NPHOTON.2011.318]
[9]  
Hobson PA, 2002, ADV MATER, V14, P1393, DOI 10.1002/1521-4095(20021002)14:19<1393::AID-ADMA1393>3.0.CO
[10]  
2-B