Mixed finite element approximation of eddy current problems

被引:30
作者
Rodríguez, AA
Hiptmair, R
Valli, A
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] ETH, Seminar Appl Math, CH-8092 Zurich, Switzerland
[3] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
eddy current problems; mixed finite elements; Langrange multipliers;
D O I
10.1093/imanum/24.2.255
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H = 0 in non-conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi-field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknowns.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [31] A MONOTONIC MIXED FINITE-ELEMENT ON RECTANGLES FOR 2ND-ORDER ELLIPTIC PROBLEMS
    MARINI, LD
    PIETRA, P
    MATEMATICA APLICADA E COMPUTACIONAL, 1991, 10 (03): : 263 - 277
  • [32] Low-order locking-free mixed finite element formulation with approximation of the minors of the deformation gradient
    Kraus, Alex
    Wriggers, Peter
    Viebahn, Nils
    Schroeder, Joerg
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (08) : 1011 - 1026
  • [33] Foundations of volume integral methods for eddy current problems
    Passarotto, Mauro
    Pitassi, Silvano
    Specogna, Ruben
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [34] Mixed finite element beam propagation method
    Schulz, D
    Glingener, C
    Bludszuweit, M
    Voges, E
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (07) : 1336 - 1342
  • [35] On the mixed finite element method with Lagrange multipliers
    Babuska, I
    Gatica, GN
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (02) : 192 - 210
  • [36] Mixed finite element modelling of cartilaginous tissues
    Kaasschieter, EF
    Frijns, AJH
    Huyghe, JM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) : 549 - 560
  • [37] Several mixed finite element technics for magnetostatics
    Bandelier, B
    Daveau, C
    Rioux-Damidau, F
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1175 - 1178
  • [38] FICTITIOUS DOMAIN MIXED FINITE-ELEMENT APPROACH FOR A CLASS OF OPTIMAL SHAPE DESIGN-PROBLEMS
    HASLINGER, J
    KLARBRING, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (04): : 435 - 450
  • [39] Solving Log-Transformed Random Diffusion Problems by Stochastic Galerkin Mixed Finite Element Methods
    Ullmann, Elisabeth
    Powell, Catherine E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 509 - 534
  • [40] Voltage and current excitation for time-harmonic eddy-current problems
    Rodriguez, Ana Alonso
    Valli, Alberto
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (05) : 1477 - 1494