Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

被引:32
作者
Xu, Han [1 ]
Zhang, Ch [1 ]
Zhou, Wen [1 ]
Li, Gao-Ren [1 ]
机构
[1] Sun Yat Sen Univ, MOE Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CORE-SHELL STRUCTURE; ENERGY-DENSITY; NICO2O4; NANOSHEETS; METAL-OXIDES; HIGH-POWER; CARBON; NANOSTRUCTURES; NANOWIRES; COMPOSITE; GROWTH;
D O I
10.1039/c5nr04449a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)(2)/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)(2)/RGO/NiO SNTAs exhibit a significantly improved specific capacity (similar to 1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with similar to 98% C-sp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)(2), RGO, and NiO. The high-performance ASCs are assembled using Co(OH)(2)/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% C-sp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.
引用
收藏
页码:16932 / 16942
页数:11
相关论文
共 57 条
[1]   Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance [J].
Chao, Dongliang ;
Xia, Xinhui ;
Zhu, Changrong ;
Wang, Jin ;
Uu, Jilei ;
Lin, Jianyi ;
Shen, Zexiang ;
Fan, Hong Jin .
NANOSCALE, 2014, 6 (11) :5691-5697
[2]   In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Ma, Xiao ;
Li, Zhe-Yang ;
Yu, Shu-Hong .
NANO ENERGY, 2014, 9 :345-354
[3]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[4]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[5]   Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes [J].
Chen, Tao ;
Xue, Yuhua ;
Roy, Ajit K. ;
Dai, Liming .
ACS NANO, 2014, 8 (01) :1039-1046
[6]   Graphene/NiO Nanowires: Controllable One-Pot Synthesis and Enhanced Pseudocapacitive Behavior [J].
Dam, Duc Tai ;
Wang, Xin ;
Lee, Jong-Min .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8246-8256
[7]   Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes [J].
Fan, Le-Qing ;
Liu, Gui-Jing ;
Wu, Ji-Huai ;
Liu, Lu ;
Lin, Jian-Ming ;
Wei, Yue-Lin .
ELECTROCHIMICA ACTA, 2014, 137 :26-33
[8]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[9]   Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors [J].
Feng, Jun ;
Sun, Xu ;
Wu, Changzheng ;
Peng, Lele ;
Lin, Chenwen ;
Hu, Shuanglin ;
Yang, Jinlong ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (44) :17832-17838
[10]   High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2 [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2801-2810