共 25 条
Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics
被引:40
作者:
Bhrawy, A. H.
[1
,2
]
Abdelkawy, M. A.
[2
]
Biswas, A.
[1
,3
]
机构:
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
关键词:
Jacobi elliptic functions;
Nonlinear physical phenomena;
Jimbo-Miwa equation;
Calogero-Bogoyavlenskii-Schiff equation;
Potential YTSF equation;
BOGOYAVLENSKII-SCHIFF EQUATION;
JIMBO-MIWA EQUATION;
ELLIPTIC FUNCTION-METHOD;
SUPERTHERMAL ELECTRONS;
GENERALIZED EVOLUTION;
1-SOLITON SOLUTION;
DIMENSIONS;
D O I:
10.1007/s12648-013-0338-9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Multi-dimensional nonlinear evolution equations are studied in this paper. Jacobi's elliptic function method, traveling wave hypothesis and Lie symmetry approaches are used to integrate these equations. The second approach only reveals toplogical 1-soliton solution while first approach displays an overwhelming number of solutions for these equations that include cnoidal waves, snoidal waves and others. In limiting cases, linear waves and solitary waves are revealed, depending on whether modulus of ellipticity approaches zero or one.
引用
收藏
页码:1125 / 1131
页数:7
相关论文