Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics

被引:41
作者
Bhrawy, A. H. [1 ,2 ]
Abdelkawy, M. A. [2 ]
Biswas, A. [1 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
关键词
Jacobi elliptic functions; Nonlinear physical phenomena; Jimbo-Miwa equation; Calogero-Bogoyavlenskii-Schiff equation; Potential YTSF equation; BOGOYAVLENSKII-SCHIFF EQUATION; JIMBO-MIWA EQUATION; ELLIPTIC FUNCTION-METHOD; SUPERTHERMAL ELECTRONS; GENERALIZED EVOLUTION; 1-SOLITON SOLUTION; DIMENSIONS;
D O I
10.1007/s12648-013-0338-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multi-dimensional nonlinear evolution equations are studied in this paper. Jacobi's elliptic function method, traveling wave hypothesis and Lie symmetry approaches are used to integrate these equations. The second approach only reveals toplogical 1-soliton solution while first approach displays an overwhelming number of solutions for these equations that include cnoidal waves, snoidal waves and others. In limiting cases, linear waves and solitary waves are revealed, depending on whether modulus of ellipticity approaches zero or one.
引用
收藏
页码:1125 / 1131
页数:7
相关论文
共 25 条
[1]   Integrable system modelling shallow water waves: Kaup-Boussinesq shallow water system [J].
Bhrawy, A. H. ;
Tharwat, M. M. ;
Abdelkawy, M. A. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (07) :665-671
[2]   New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Kaup-Kupershmidt Equations [J].
Bhrawy, A. H. ;
Biswas, Anjan ;
Javidi, M. ;
Ma, Wen Xiu ;
Pinar, Zehra ;
Yildirim, Ahmet .
RESULTS IN MATHEMATICS, 2013, 63 (1-2) :675-686
[3]   A Jacobi elliptic function method for nonlinear arrays of vortices [J].
Bhrawy, A. H. ;
Tharwat, M. M. ;
Yildirim, A. ;
Abdelkawy, M. A. .
INDIAN JOURNAL OF PHYSICS, 2012, 86 (12) :1107-1113
[4]   Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) :915-925
[5]   Solitary waves and conservation laws of Bona-Chen equations [J].
Biswas, A. ;
Krishnan, E. V. ;
Suarez, P. ;
Kara, A. H. ;
Kumar, S. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) :169-175
[6]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[7]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[8]   1-Soliton solution of the B(m, n) equation with generalized evolution [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3226-3229
[9]   Solitary wave solution for the generalized Kawahara equation [J].
Biswas, Anjan .
APPLIED MATHEMATICS LETTERS, 2009, 22 (02) :208-210
[10]   The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions [J].
Bruzón, MS ;
Gandarias, ML ;
Muriel, C ;
Ramírez, J ;
Saez, S ;
Romero, FR .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) :1367-1377