Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis

被引:29
作者
Gaggiotti, Sara [1 ]
Della Pelle, Flavio [2 ]
Mascini, Marcello [2 ]
Cichelli, Angelo [1 ]
Compagnone, Dario [2 ]
机构
[1] G dAnnunzio Univ Chieti Pescara, Dept Med Oral & Biotechnol Sci, Via Vestini 31, I-66100 Chieti, Italy
[2] Univ Teramo, Fac Biosci & Technol Food Agr & Environm, Via Renato Balzarini 1, I-64100 Teramo, Italy
关键词
gas sensors; sensor arrays; oligopeptide; molecularly imprinted polymers; oligonucleotide; E-nose; volatile organic compounds; QUARTZ-CRYSTAL MICROBALANCE; ELECTRONIC NOSE; MACHINE OLFACTION; CHEMICAL SENSORS; QCM SENSORS; BIOSENSORS; ARRAYS; FOOD; NANOPARTICLES; SILVER;
D O I
10.3390/s20164433
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detection and monitoring of volatiles is a challenging and fascinating issue in environmental analysis, agriculture and food quality, process control in industry, as well as in 'point of care' diagnostics. Gas chromatographic approaches remain the reference method for the analysis of volatile organic compounds (VOCs); however, gas sensors (GSs), with their advantages of low cost and no or very little sample preparation, have become a reality. Gas sensors can be used singularly or in array format (e.g., e-noses); coupling data output with multivariate statical treatment allows un-target analysis of samples headspace. Within this frame, the use of new binding elements as recognition/interaction elements in gas sensing is a challenging hot-topic that allowed unexpected advancement. In this review, the latest development of gas sensors and gas sensor arrays, realized using peptides, molecularly imprinted polymers and DNA is reported. This work is focused on the description of the strategies used for the GSs development, the sensing elements function, the sensors array set-up, and the application in real cases.
引用
收藏
页码:1 / 26
页数:28
相关论文
共 113 条
[1]  
Abaffy T., 2015, J Pharmacogenomics Pharmacoproteomics, V6, P1000152, DOI DOI 10.4172/2153-0645.1000152
[2]   Surface plasmon resonance for biosensing: A mini-review [J].
Abdulhalim, Ibrahim ;
Zourob, Mohammad ;
Lakhtakia, Akhlesh .
ELECTROMAGNETICS, 2008, 28 (03) :214-242
[3]   Molecularly Imprinted Polymers in Electrochemical and Optical Sensors [J].
Ahmad, Omar S. ;
Bedwell, Thomas S. ;
Esen, Cem ;
Garcia-Cruz, Alvaro ;
Piletsky, Sergey A. .
TRENDS IN BIOTECHNOLOGY, 2019, 37 (03) :294-309
[4]  
Ali AAS, 2013, IEEE I C ELECT CIRC, P707, DOI 10.1109/ICECS.2013.6815512
[5]  
Arshak K., 2004, Sensor Review, V24, P181, DOI 10.1108/02602280410525977
[6]   Protein- and Peptide-Based Biosensors in Artificial Olfaction [J].
Barbosa, Armenio J. M. ;
Oliveira, Ana Rita ;
Roque, Ana C. A. .
TRENDS IN BIOTECHNOLOGY, 2018, 36 (12) :1244-1258
[7]   Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds [J].
Brenet, Sophie ;
John-Herpin, Aurelian ;
Gallat, Francois-Xavier ;
Musnier, Benjamin ;
Buhot, Arnaud ;
Herrier, Cyril ;
Rousselle, Tristan ;
Livache, Thierry ;
Hou, Yanxia .
ANALYTICAL CHEMISTRY, 2018, 90 (16) :9879-9887
[8]  
Brenneisen Rudolf, 2007, P17, DOI 10.1007/978-1-59259-947-9_2
[9]   Unraveling the sense of smell (Nobel lecture) [J].
Buck, LB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (38) :6128-6140
[10]   Affinity Sensing Strategies for the Detection of Pesticides in Food [J].
Capoferri, Denise ;
Della Pelle, Flavio ;
Del Carlo, Michele ;
Compagnone, Dario .
FOODS, 2018, 7 (09)