Design of fractional order PID controller for load frequency control system with communication delay

被引:40
|
作者
Kumar, Anand [1 ]
Pan, Somnath [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Elect Engn, Dhanbad 826004, India
关键词
Load-frequency control (LFC); Communication delay; Fractional order PID controller; Reference model; Phase-margin; Maximum sensitivity; POWER-SYSTEMS; MARGIN; OPTIMIZATION; STABILITY; CONSTANT; RULES;
D O I
10.1016/j.isatra.2021.12.033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work explores a frequency-domain approach to design a fractional order proportional-integral- derivative (FO-PID) controller cascaded with a first-order filter for the load frequency control (LFC) system with communication delay. The proposed method is based on suitable reference model devel-opment in the direct synthesis (DS) approach, followed by frequency response matching technique. The reference model is developed for robust control-loop performance using the stability-margin and time-domain specifications. The values of the fractional orders of the integral and derivative terms are obtained according to the dynamics of the nominal system. The proposed controllers have been designed for some LFC systems taken from the literature that have different dynamics with reheat, non-reheat and hydraulic turbines and performances with non-linearity like generation rate constraint (GRC), generation dead band (GDB) along with noise have been compared favorably with that of some controllers prevalent in the literature. The proposed controllers have been shown to work efficaciously for the decentralized multi-area IEEE 39-bus New England test system along with variable communication delay. To show the efficacy of the proposed controllers the load-disturbance responses along with the frequency and time domain performance indices have been evaluated for comparison.(c) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:138 / 149
页数:12
相关论文
共 50 条
  • [31] Computation of All Stabilizing PI Controller Parameters of Hybrid Load Frequency Control System with Communication Time Delay
    Erol, Halil
    Sezer, Halil
    Ayasun, Saffet
    2017 5TH INTERNATIONAL ISTANBUL SMART GRID AND CITIES CONGRESS AND FAIR (ICSG), 2017, : 130 - 134
  • [32] Robust design of fractional order IMC controller for fractional order processes with time delay
    Gnaneshwar, Kurnam
    Trivedi, Rishika
    Padhy, Prabin Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2022, 35 (05)
  • [33] Analytical Design of Enhanced Fractional Filter PID Controller for Improved Disturbance Rejection of Second Order Plus Time Delay Processes
    Ranganayakulu, R.
    Babu, G. Uday Bhaskar
    Rao, A. Seshagiri
    CHEMICAL PRODUCT AND PROCESS MODELING, 2019, 14 (01):
  • [34] Indirect IMC based PID Controller Design for Single Area LFC System in the Presence of Uncertainty and Communication delay
    Dehuri, Padmalaya
    Hote, Yogesh Vijay
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 295 - 300
  • [35] Load frequency control strategy via fractional-order controller and reduced-order modeling
    Saxena, Sahaj
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 104 : 603 - 614
  • [36] Impact of Communication Delay on Load Frequency Control of Interconnected Power System
    Singh, Vijay P.
    Pandey, S. K.
    Agrawal, Sanjay
    Singh, Navdeep
    2018 5TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (UPCON), 2018, : 440 - 445
  • [37] Design of a new load frequency PID controller using QFT
    Khodabakhshian, A
    Golbon, N
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 970 - 975
  • [38] Stability Testing and IMC Based Fractional Order PID Controller Design for Heating Furnace System
    Sondhi, Swati
    Hote, Yogesh V.
    2014 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2014,
  • [39] Optimum Design of Fractional Order PID Controller for a Servo System Using Hybrid Intelligent Algorithm
    Xiao, Yuhe
    Li, Maojun
    2019 12TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2019), 2019, : 116 - 119
  • [40] PID controller design for fractional-order systems with time delays
    Ozbay, Hitay
    Bonnet, Catherine
    Fioravanti, Andre Ricardo
    SYSTEMS & CONTROL LETTERS, 2012, 61 (01) : 18 - 23