The Baum-Connes conjecture and discrete group actions on trees

被引:18
作者
Tu, JL [1 ]
机构
[1] Univ Paris 06, Inst Math, UMR 7586, F-75252 Paris 05, France
关键词
Baum-Connes conjecture; KK-theory; tree;
D O I
10.1023/A:1007751625568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a property (BC') for discrete groups, which we prove to imply the Baum-Connes conjecture with coefficients and the K-amenability of the group. Then, we show that if Gamma is a discrete group which acts on a tree X such that X/Gamma is compact, and the stabilizers of the vertices and the stabilizers of the edges satisfy (BC'), then Gamma itself satisfies (BC'). Finally, we indicate a couple of applications.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 8 条
[1]  
BAAJ S, 1989, K-THEORY, V2, P683
[2]  
Baum P., 1994, CONT MATH, V167, P241
[3]  
CUNTZ J, 1983, J REINE ANGEW MATH, V344, P180
[4]  
HILSUM M, 1987, ANN SCI ECOLE NORM S, V20, P325
[5]  
KASPAROV G, 1994, CR ACAD SCI I-MATH, V319, P815
[6]  
Kasparov Gennadi, 1991, K-THEORY, V4, P303
[7]   EQUIVARIANT KK-THEORY AND THE NOVIKOV-CONJECTURE [J].
KASPAROV, GG .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :147-201
[8]   The Novikov conjecture for hyperbolic foliations [J].
Tu, JL .
K-THEORY, 1999, 16 (02) :129-184