POLYNOMIALS WITH ZEROS AND SMALL NORM ON CURVES

被引:0
作者
Totik, Vilmos [1 ,2 ]
机构
[1] Univ Szeged, Bolyai Inst, Anal Res Grp, Hungarian Acad Sci, H-6720 Szeged, Hungary
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
欧洲研究理事会;
关键词
Polynomials; zeros; small supremum norm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of how zeros lying on the boundary of a domain influence the norm of polynomials (under the normalization that their value is fixed at a point). It is shown that kappa zeros raise the norm by a factor (1 + c kappa/n) (where n is the degree of the polynomial), while kappa excessive zeros on an arc compared to it times the equilibrium measure raise the norm by a factor exp(c kappa(2)/n). These bounds are sharp, and they generalize earlier results for the unit circle which are connected to some constructions in number theory. Some related theorems of Andrievskii and Blatt will also be strengthened.
引用
收藏
页码:3531 / 3539
页数:9
相关论文
共 15 条
[1]   Polynomials with prescribed zeros on an analytic curve [J].
Andrievskii, V. V. ;
Blatt, H-P .
ACTA MATHEMATICA HUNGARICA, 2010, 128 (03) :221-238
[2]  
Andrievskii V. V., 2008, COMPUT METH FUNCT TH, P243
[3]  
[Anonymous], 2002, SPRINGER MG MATH
[4]  
[Anonymous], 1992, Fundamental Principles of Mathematical Sciences
[5]  
[Anonymous], 1997, LOGARITHMIC POTENTIA, DOI DOI 10.1007/978-3-662-03329-6
[6]   An improvement of the Erdos-Turan theorem on the distribution of zeros of polynomials [J].
Erdelyi, Tamas .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (5-6) :267-270
[7]  
Garnett J. B., 2005, New Math. Monogr., V2
[8]  
Halasz G, 1983, STUDIES PURE MATH, P259
[9]   INEQUALITIES FOR POLYNOMIALS WITH A PRESCRIBED ZERO [J].
LACHANCE, M ;
SAFF, EB ;
VARGA, RS .
MATHEMATISCHE ZEITSCHRIFT, 1979, 168 (02) :105-116
[10]   Sharpening of Hilbert's lemniscate theorem [J].
Nagy, B ;
Totik, V .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :191-223