Pseudomodes for Schrodinger operators with complex potentials

被引:14
作者
Krejcirik, David [1 ]
Siegl, Petr [2 ]
机构
[1] Czech Tech Univ, Dept Math, Fac Nucl Sci & Phys Engn, Trojanova 13, Prague 12000 2, Czech Republic
[2] Queens Univ Belfast, Sch Math & Phys, Univ Rd, Belfast BT7 1NN, Antrim, North Ireland
基金
瑞士国家科学基金会;
关键词
Pseudospectrum; Schrodinger operators; Complex potential; WKB; PSEUDOSPECTRA; SPECTRUM;
D O I
10.1016/j.jfa.2018.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For one-dimensional Schrodinger operators with complex-valued potentials, we construct pseudomodes corresponding to large pseudoeigenvalues. We develop a first systematic non-semi-classical approach, which results in a substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including discontinuous ones. Applications of the present results to higher-dimensional Schrodinger operators are also discussed. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2856 / 2900
页数:45
相关论文
共 50 条
[41]   SCHRODINGER OPERATORS WITH MEASURE-VALUED POTENTIALS: SEMIBOUNDEDNESS AND SPECTRUM [J].
Mikhailets, Vladimir ;
Molyboga, Volodymyr .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2018, 24 (03) :240-254
[42]   Higher-order Kato class potentials for Schrodinger operators [J].
Zheng, Quan ;
Yao, Xiaohua .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :293-301
[43]   Ballistic transport for Schrodinger operators with quasi-periodic potentials [J].
Karpeshina, Yulia ;
Parnovski, Leonid ;
Shterenberg, Roman .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
[44]   On the discrete spectrum of Schrodinger operators with Ahlfors regular potentials in a strip [J].
Karuhanga, Martin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :918-938
[45]   Asymptotics of the Weyl function for Schrodinger operators with measure-valued potentials [J].
Luger, Annemarie ;
Teschl, Gerald ;
Woehrer, Tobias .
MONATSHEFTE FUR MATHEMATIK, 2016, 179 (04) :603-613
[46]   Exponential estimates for eigenfunctions of Schrodinger operators with rapidly increasing and discontinuous potentials [J].
Rabinovich, VS .
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS: ISRAEL MATHEMATICAL CONFERENCE PROCEEDINGS, 2004, 364 :225-236
[47]   Absolutely continuous spectrum of discrete Schrodinger operators with slowly oscillating potentials [J].
Kim, Ahyoung ;
Kiselev, Alexander .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (04) :552-568
[48]   Spectral theory for slowly oscillating potentials .2. Schrodinger operators [J].
Stolz, G .
MATHEMATISCHE NACHRICHTEN, 1997, 183 :275-294
[49]   EIGENVALUE BOUNDS FOR STARK OPERATORS WITH COMPLEX POTENTIALS [J].
Korotyaev, Evgeny ;
Safronov, Oleg .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (02) :971-1008
[50]   Hardy spaces H1 for Schrodinger operators with compactly supported potentials [J].
Dziubanski, Jacek ;
Zienkiewicz, Jacek .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) :315-326