Port-Hamiltonian flexible multibody dynamics

被引:9
|
作者
Brugnoli, Andrea [1 ]
Alazard, Daniel [1 ]
Pommier-Budinger, Valerie [1 ]
Matignon, Denis [1 ]
机构
[1] Univ Toulouse, ISAE SUPAERO, 10 Ave Edouard Belin,BP-54032, F-31055 Toulouse 4, France
关键词
Port-Hamiltonian systems; Floating frame formulation; Flexible multibody systems; Structure-preserving discretization; Substructuring; PRESERVING MODEL-REDUCTION; TRANSFER-MATRIX; SYSTEMS; INTERCONNECTION; FRAMEWORK; DESIGN;
D O I
10.1007/s11044-020-09758-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new formulation for the modular construction of flexible multibody systems is presented. By rearranging the equations for a flexible floating body and introducing the appropriate canonical momenta, the model is recast into a coupled system of ordinary and partial differential equations in port-Hamiltonian (pH) form. This approach relies on a floating frame description and is valid under the assumption of small deformations. This allows including mechanical models that cannot be easily formulated in terms of differential forms. Once a pH model is established, a finite element based method is then introduced to discretize the dynamics in a structure-preserving manner. Thanks to the features of the pH framework, complex multibody systems could be constructed in a modular way. Constraints are imposed at the velocity level, leading to an index 2 quasilinear differential-algebraic system. Numerical tests are carried out to assess the validity of the proposed approach.
引用
收藏
页码:343 / 375
页数:33
相关论文
共 50 条
  • [41] A STRUCTURAL OBSERVATION ON PORT-HAMILTONIAN SYSTEMS
    Picard, Rainer H.
    Trostorff, Sascha
    Watson, Bruce
    Waurick, Marcus
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 511 - 535
  • [42] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [43] Generalized port-Hamiltonian DAE systems
    van der Schaft, Arjan
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2018, 121 : 31 - 37
  • [44] The piston problem in a port-Hamiltonian formalism
    Lequeurre, Julien
    Tucsnak, Marius
    IFAC PAPERSONLINE, 2015, 48 (13): : 212 - 216
  • [45] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [46] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [47] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [48] Notch filters for port-Hamiltonian systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 238 - 243
  • [49] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [50] PORT-HAMILTONIAN DYNAMIC MODE DECOMPOSITION*
    Morandin, Riccardo
    Nicodemus, Jonas
    Unger, Benjamin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (04): : A1690 - A1710