Port-Hamiltonian flexible multibody dynamics

被引:9
|
作者
Brugnoli, Andrea [1 ]
Alazard, Daniel [1 ]
Pommier-Budinger, Valerie [1 ]
Matignon, Denis [1 ]
机构
[1] Univ Toulouse, ISAE SUPAERO, 10 Ave Edouard Belin,BP-54032, F-31055 Toulouse 4, France
关键词
Port-Hamiltonian systems; Floating frame formulation; Flexible multibody systems; Structure-preserving discretization; Substructuring; PRESERVING MODEL-REDUCTION; TRANSFER-MATRIX; SYSTEMS; INTERCONNECTION; FRAMEWORK; DESIGN;
D O I
10.1007/s11044-020-09758-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new formulation for the modular construction of flexible multibody systems is presented. By rearranging the equations for a flexible floating body and introducing the appropriate canonical momenta, the model is recast into a coupled system of ordinary and partial differential equations in port-Hamiltonian (pH) form. This approach relies on a floating frame description and is valid under the assumption of small deformations. This allows including mechanical models that cannot be easily formulated in terms of differential forms. Once a pH model is established, a finite element based method is then introduced to discretize the dynamics in a structure-preserving manner. Thanks to the features of the pH framework, complex multibody systems could be constructed in a modular way. Constraints are imposed at the velocity level, leading to an index 2 quasilinear differential-algebraic system. Numerical tests are carried out to assess the validity of the proposed approach.
引用
收藏
页码:343 / 375
页数:33
相关论文
共 50 条
  • [31] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [32] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [33] The Port-Hamiltonian Structure of Continuum Mechanics
    Rashad, Ramy
    Stramigioli, Stefano
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [34] Port-Hamiltonian FE models for filaments
    Thoma, Tobias
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2022, 55 (30): : 353 - 358
  • [35] Port-Hamiltonian Modelling for Buckling Control of a Vertical Flexible Beam with Actuation at the Bottom
    Trivedi, Megha V.
    Banavar, Ravi N.
    Kotyczka, Paul
    IFAC PAPERSONLINE, 2015, 48 (13): : 31 - 38
  • [36] PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY
    Camlibel, M. K.
    Van der Schaftdagger, A. J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (04) : 2193 - 2221
  • [37] On the stability of port-Hamiltonian descriptor systems
    Gernandt, Hannes
    Haller, Frederic E.
    IFAC PAPERSONLINE, 2021, 54 (19): : 137 - 142
  • [38] An Overview on Irreversible Port-Hamiltonian Systems
    Ramirez, Hector
    Le Gorrec, Yann
    ENTROPY, 2022, 24 (10)
  • [39] OPTIMAL ROBUSTNESS OF PORT-HAMILTONIAN SYSTEMS
    Mehrmann, Volker
    Van Dooren, Paul M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 134 - 151
  • [40] Port-Hamiltonian Formulation of Systems With Memory
    Jeltsema, Dimitri
    Doria-Cerezo, Arnau
    PROCEEDINGS OF THE IEEE, 2012, 100 (06) : 1928 - 1937