Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: an application to masonry structures

被引:18
作者
Raffa, Maria Letizia [1 ]
Lebon, Frederic [2 ]
Rizzoni, Raffaella [3 ]
机构
[1] CNRS, MSME, UMR 8208, Lab Modelisat & Simulat Multi Echelle, Creteil, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, Lab Mech & Acoust, Marseille, France
[3] Univ Ferrara, Dept Engn, Ferrara, Italy
关键词
Bonding; Asymptotic analysis; Finite strains; Damage; Imperfect interface; Brick/mortar interface; ADHESIVELY BONDED JOINTS; ANISOTROPIC MATERIAL; PART I; SOFT; HOMOGENIZATION; FRICTION; CONTACT; VENANT; WALLS;
D O I
10.1007/s11012-017-0765-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The proposed study aims to derive an imperfect interface model which couples finite strain and damaging. The governing equations are obtained via an asymptotic approach within the finite strain theory. Theoretical findings have been numerically validated within an original application to brick/mortar interfaces in masonry walls in shear loading conditions.
引用
收藏
页码:1645 / 1660
页数:16
相关论文
共 52 条
[1]   Combining interface damage and friction in a cohesive-zone model [J].
Alfano, Giulio ;
Sacco, Elio .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 68 (05) :542-582
[2]  
[Anonymous], NONSMOOTH THERMOMECH
[3]  
Anthoine A, 1999, INT J SOLIDS STRUCT, V32, P137
[4]   Imperfect soft and stiff interfaces in two-dimensional elasticity [J].
Benveniste, Y ;
Miloh, T .
MECHANICS OF MATERIALS, 2001, 33 (06) :309-323
[5]   A model of imperfect interface with damage [J].
Bonetti E. ;
Bonfanti G. ;
Lebon F. ;
Rizzoni R. .
Meccanica, 2017, 52 (8) :1911-1922
[6]   Modeling via the internal energy balance and analysis of adhesive contact with friction in thermoviscoelasticity [J].
Bonetti, Elena ;
Bonfanti, Giovanna ;
Rossi, Riccarda .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :473-507
[7]   Analysis of a temperature-dependent model for adhesive contact with friction [J].
Bonetti, Elena ;
Bonfanti, Giovanna ;
Rossi, Riccarda .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 285 :42-62
[8]  
Ciarlet P. G., 1988, 3 DIMENSIONAL ELASTI, VI
[9]   An asymptotic approach to the adhesion of thin stiff films [J].
Dumont, S. ;
Lebon, F. ;
Rizzoni, R. .
MECHANICS RESEARCH COMMUNICATIONS, 2014, 58 :24-35
[10]  
Fileccia Scimeni G, 2014, COMPUT METHODS APPL, V279, P6685