Effect of surface modification of metallic nanorod on spontaneous emission enhancement

被引:0
作者
Su Yu-Feng [1 ]
Peng Jin-Zhang [1 ]
Yang Hong [1 ]
Huang Yong-Gang [1 ]
机构
[1] Jishou Univ, Coll Phys & Electromech Engn, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
surface modification; spontaneous emission rate; metallic nanorod; NANOSTRUCTURES; PLASMONICS;
D O I
10.7498/aps.71.20220439
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Metal nanorods show excellent optical properties, since the plasmonic resonance frequency can be tuned by its aspect ratio and the optical field can be confined within a region of subwavelength, even within a nanometer region. It has the ability to flexibly modify the spontaneous emission properties of a nearby quantum emitter. However, it is unclear how the emission property changes when the metal nanorod has been deposited at the tips or coated on all sides with metal. In this work, the spontaneous emission enhancements of a two-level atom around a tailored nanorod with a wide variety of shapes, dimensions or materials are systematically investigated by the finite element method. Three different optical response models are adopted, including the classical local response approximation (LRA), the nonlocal hydrodynamic model (HDM), and the generalized nonlocal optical response model (GNOR). For a cylindrical nanorod with two endcaps, it is found that the resonance frequency shows large redshift and the emission enhancement peak increases as the endcap gradually changes from cone to cylinder of the same height. The resonance frequency shows small blueshift and the emission enhancement peak decreases slightly as the deposited metal of the conical endcaps changes from gold to silver. However, as the material of the cylinder also changes from gold to silver, becoming an all-silver nanostructure, an obvious blueshift can be detected at the resonance frequency and the emission enhancement peak rises sharply. For bimetal core-shell nanostructure, the shell can screen the surface plasmon of the core from being excited, and the plasmonic resonance associated with shell increases in proportion to the thickness of the shell. The emission enhancement peak for gold nanostructure appears to be blue-shifted when coated with silver. In contrast, it is red-shifted for silver nanostructure coated with gold.
引用
收藏
页数:12
相关论文
共 48 条
[1]  
Agarwal G S., 1974, QUANTUM STAT THEORIE, ppp1
[2]   Optical properties of coupled metallic nanorods for field-enhanced spectroscopy [J].
Aizpurua, J ;
Bryant, GW ;
Richter, LJ ;
de Abajo, FJG ;
Kelley, BK ;
Mallouk, T .
PHYSICAL REVIEW B, 2005, 71 (23)
[3]   Novel Nanostructures and Materials for Strong Light Matter Interactions [J].
Baranov, Denis G. ;
Wersall, Martin ;
Cuadra, Jorge ;
Antosiewicz, Tomasz J. ;
Shegai, Timur .
ACS PHOTONICS, 2018, 5 (01) :24-42
[4]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729
[5]  
Berestetskii V B, 1982, QUANTUM ELECTRODYNAM, V4, ppp159
[6]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[7]   Gold nanorod-based localized surface plasmon resonance biosensors: A review [J].
Cao, Jie ;
Sun, Tong ;
Grattan, Kenneth T. V. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 :332-351
[8]   Gold nanorods and their plasmonic properties [J].
Chen, Huanjun ;
Shao, Lei ;
Li, Qian ;
Wang, Jianfang .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2679-2724
[9]   Far-field analysis of axially symmetric three-dimensional directional cloaks [J].
Ciraci, Cristian ;
Urzhumov, Yaroslav ;
Smith, David R. .
OPTICS EXPRESS, 2013, 21 (08) :9397-9406
[10]   Optical nanorod antennas as dispersive one-dimensional Fabry-Peacuterot resonators for surface plasmons [J].
Cubukcu, Ertugrul ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2009, 95 (20)