Next-generation pacemakers: from small devices to biological pacemakers

被引:131
作者
Cingolani, Eugenio [1 ]
Goldhaber, Joshua I. [1 ]
Marban, Eduardo [1 ]
机构
[1] Cedars Sinai Heart Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
关键词
CARDIAC CONDUCTION SYSTEM; EMBRYONIC STEM-CELLS; COMPLETE HEART-BLOCK; VENTRICULAR PACING MODE; INNATE IMMUNE-RESPONSE; CONGENITAL AV-BLOCK; PROTEIN-KINASE-A; CLINICAL-EXPERIENCE; SINUS NODE; PERMANENT PACEMAKER;
D O I
10.1038/nrcardio.2017.165
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 115 条
[51]   Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block [J].
Hu, Yu-Feng ;
Dawkins, James Frederick ;
Cho, Hee Cheol ;
Marban, Eduardo ;
Cingolani, Eugenio .
SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (245)
[52]   Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells [J].
Hüser, J ;
Wang, YG ;
Sheehan, KA ;
Cifuentes, F ;
Lipsius, SL ;
Blatter, LA .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 524 (03) :795-806
[53]   SHOX2 Overexpression Favors Differentiation of Embryonic Stem Cells into Cardiac Pacemaker Cells, Improving Biological Pacing Ability [J].
Ionta, Vittoria ;
Liang, Wenbin ;
Kim, Elizabeth H. ;
Rafie, Reza ;
Giacomello, Alessandro ;
Marban, Eduardo ;
Cho, Hee Cheol .
STEM CELL REPORTS, 2015, 4 (01) :129-142
[54]   Clinical and pathologic implications of extending the spectrum of maternal autoantibodies reactive with ribonucleoproteins associated with cutaneous and now cardiac neonatal lupus from SSA/Ro and SSB/La to U1RNP [J].
Izmirly, Peter M. ;
Halushka, Marc K. ;
Rosenberg, Avi Z. ;
Whelton, Sean ;
Rais-Bahrami, Khodayar ;
Nath, Dilip S. ;
Parton, Hilary ;
Clancy, Robert M. ;
Rasmussen, Sara ;
Saxena, Amit ;
Buyon, Jill P. .
AUTOIMMUNITY REVIEWS, 2017, 16 (09) :980-983
[55]   Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18 [J].
Kapoor, Nidhi ;
Liang, Wenbin ;
Marban, Eduardo ;
Cho, Hee Cheol .
NATURE BIOTECHNOLOGY, 2013, 31 (01) :54-+
[56]   Electromechanical integration of cardiomyocytes derived from human embryonic stem cells [J].
Kehat, I ;
Khimovich, L ;
Caspi, O ;
Gepstein, A ;
Shofti, R ;
Arbel, G ;
Huber, I ;
Satin, J ;
Itskovitz-Eldor, J ;
Gepstein, L .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1282-1289
[57]   Leadless Cardiac Pacemaker Implantation After Lead Extraction in Patients With Severe Device Infection [J].
Kypta, Alexander ;
Blessberger, Hermann ;
Kammler, Juergen ;
Lambert, Thomas ;
Lichtenauer, Michael ;
Brandstaetter, Walter ;
Gabriel, Michael ;
Steinwender, Clemens .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2016, 27 (09) :1067-1071
[58]   Lessons from the first patient with an implanted pacemaker:: 1958-2001 [J].
Larsson, B ;
Elmqvist, H ;
Rydén, L ;
Schüller, H .
PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2003, 26 (01) :114-124
[59]   A Randomized comparison of triple-site versus dual-site ventricular stimulation in patients with congestive heart failure [J].
Leclercq, Christophe ;
Gadler, Fredrik ;
Kranig, Wolfgang ;
Ellery, Sue ;
Gras, Daniel ;
Lazarus, Arnaud ;
Clementy, Jacques ;
Boulogne, Eric ;
Daubert, Jean-Claude .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (15) :1455-1462
[60]   Wnt signalling suppresses voltage-dependent Na+ channel expression in postnatal rat cardiomyocytes [J].
Liang, Wenbin ;
Cho, Hee Cheol ;
Marban, Eduardo .
JOURNAL OF PHYSIOLOGY-LONDON, 2015, 593 (05) :1147-1157