New integrable systems of derivative nonlinear Schrodinger equations with multiple components

被引:104
|
作者
Tsuchida, T [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
derivative nonlinear Schrodinger equation; multi-component system; Lax pair; AKNS formulation; gauge transformation; conservation laws;
D O I
10.1016/S0375-9601(99)00272-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lax pair for a derivative nonlinear Schrodinger equation proposed by Chen-Lee-Liu is generalized into matrix form. This gives new types of integrable coupled derivative nonlinear Schrodinger equations. By virtue of a gauge transformation, a new multi-component extension of a derivative nonlinear Schrodinger equation proposed by Kaup-Newell is also obtained. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
  • [41] Vector nonlinear Schrodinger equation with an integrable defect and new integrable boundary conditions
    Xia, Baoqiang
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 450
  • [42] Schemes for Generating Different Nonlinear Schrodinger Integrable Equations and Their Some Properties
    Zhang, Yu-feng
    Wang, Hai-feng
    Bai, Na
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (03): : 579 - 600
  • [43] On integrable two-dimensional generalizations of nonlinear Schrodinger type equations
    Mikhailov, AV
    Yamilov, RI
    PHYSICS LETTERS A, 1997, 230 (5-6) : 295 - 300
  • [44] Completely integrable nonlinear Schrodinger type equations on moving space curves
    Porsezian, K
    PHYSICAL REVIEW E, 1997, 55 (03): : 3785 - 3788
  • [46] Jost solutions and quantum conserved quantities of an integrable derivative nonlinear Schrodinger model
    Basu-Mallick, B
    Bhattacharyya, T
    NUCLEAR PHYSICS B, 2003, 668 (03) : 415 - 446
  • [47] Integrable nonautonomous nonlinear Schrodinger equations are equivalent to the standard autonomous equation
    Kundu, Anjan
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [48] Multiple solutions for a class of nonlinear Schrodinger equations
    Ding, YH
    Luan, SX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) : 423 - 457
  • [49] Notes on Canonical Forms of Integrable Vector Nonlinear Schrodinger Systems
    Chen, Kui
    Zhang, Da-Jun
    CHINESE PHYSICS LETTERS, 2017, 34 (10)
  • [50] Soliton interaction in the coupled mixed derivative nonlinear Schrodinger equations
    Zhang, Hai-Qiang
    Tian, Bo
    Lue, Xing
    Li, He
    Meng, Xiang-Hua
    PHYSICS LETTERS A, 2009, 373 (47) : 4315 - 4321