New integrable systems of derivative nonlinear Schrodinger equations with multiple components

被引:104
|
作者
Tsuchida, T [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
derivative nonlinear Schrodinger equation; multi-component system; Lax pair; AKNS formulation; gauge transformation; conservation laws;
D O I
10.1016/S0375-9601(99)00272-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lax pair for a derivative nonlinear Schrodinger equation proposed by Chen-Lee-Liu is generalized into matrix form. This gives new types of integrable coupled derivative nonlinear Schrodinger equations. By virtue of a gauge transformation, a new multi-component extension of a derivative nonlinear Schrodinger equation proposed by Kaup-Newell is also obtained. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
  • [1] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    INVERSE PROBLEMS, 2022, 38 (06)
  • [2] Integrable discretizations of derivative nonlinear Schrodinger equations
    Tsuchida, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7827 - 7847
  • [3] DERIVATIVE NONLINEAR SCHRODINGER TYPE EQUATIONS WITH MULTIPLE COMPONENTS AND THEIR SOLUTIONS
    YAJIMA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (06) : 1901 - 1909
  • [4] New integrable equations of nonlinear Schrodinger type
    Calogero, F
    Degasperis, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) : 91 - 137
  • [5] Non-abelian integrable systems of the derivative nonlinear Schrodinger type
    Olver, PJ
    Sokolov, VV
    INVERSE PROBLEMS, 1998, 14 (06) : L5 - L8
  • [6] An integrable decomposition of the derivative nonlinear Schrodinger equation
    Zhou Ru-Guang
    CHINESE PHYSICS LETTERS, 2007, 24 (03) : 589 - 591
  • [7] Remarks on derivative nonlinear Schrodinger systems with multiple masses
    Li, Chunhua
    Sunagawa, Hideaki
    ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 : 173 - 195
  • [8] Three nonlinear integrable couplings of the nonlinear Schrodinger equations
    Wang Hui
    Xia Tie-cheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) : 4232 - 4237
  • [9] Integrable systems of derivative nonlinear Schrodinger type and their multi-Hamiltonian structure
    Fan, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 513 - 519
  • [10] Engineering integrable nonautonomous nonlinear Schrodinger equations
    He, Xu-Gang
    Zhao, Dun
    Li, Lin
    Luo, Hong-Gang
    PHYSICAL REVIEW E, 2009, 79 (05):