Regularized extreme learning machine for regression with missing data

被引:101
作者
Yu, Qi [1 ]
Miche, Yoan [1 ]
Eirola, Emil [1 ]
van Heeswijk, Mark [1 ]
Severin, Eric [2 ]
Lendasse, Amaury [1 ,3 ,4 ]
机构
[1] Aalto Univ, Dept Informat & Comp Sci, Espoo 02150, Finland
[2] Univ Lille 1, LEM, F-59043 Lille, France
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
关键词
ELM; Ridge regression; Tikhonov regularization; LARS; Missing data; Pairwise distance estimation; MULTIPLE IMPUTATION; MAXIMUM-LIKELIHOOD;
D O I
10.1016/j.neucom.2012.02.040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a method which is the advanced modification of the original extreme learning machine with a new tool for solving the missing data problem. It uses a cascade of L-1 penalty (LARS) and L-2 penalty (Tikhonov regularization) on ELM (TROP-ELM) to regularize the matrix computations and hence makes the MSE computation more reliable, and on the other hand, it estimates the expected pairwise distances between samples directly on incomplete data so that it offers the ELM a solution to solve the missing data issues. According to the experiments on five data sets, the method shows its significant advantages: fast computational speed, no parameter need to be tuned and it appears more stable and reliable generalization performance by the two penalties. Moreover, it completes ELM with a new tool to solve missing data problem even when half of the training data are missing as the extreme case. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 2004, 2004 INT JOINT C NEU
[2]  
[Anonymous], NEUROCOMPUTING
[3]  
[Anonymous], 2000, J. Official Statistics
[4]   An introduction to modern missing data analyses [J].
Baraldi, Amanda N. ;
Enders, Craig K. .
JOURNAL OF SCHOOL PSYCHOLOGY, 2010, 48 (01) :5-37
[5]  
Bontempi G., 1998, Machine Learning: ECML-98. 10th European Conference on Machine Learning. Proceedings, P292, DOI 10.1007/BFb0026699
[6]  
Cohen J., 2003, APPL MULTIPLE REGRES, P185
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   Review: A gentle introduction to imputation of missing values [J].
Donders, A. Rogier T. ;
van der Heijden, Geert J. M. G. ;
Stijnen, Theo ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1087-1091
[9]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[10]  
Eirola E., 2011, TECHNICAL REPORT