Fibonacci-like growth of numerical semigroups of a given genus

被引:41
作者
Zhai, Alex
机构
[1] San Francisco, CA, 94107
基金
美国国家科学基金会;
关键词
Numerical semigroup; Genus of numerical semigroup;
D O I
10.1007/s00233-012-9456-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an asymptotic estimate of the number of numerical semigroups of a given genus. In particular, if n(g) is the number of numerical semigroups of genus g, we prove that lim(g ->infinity) n(g)phi(-g) = S where phi = 1+root 5/2 is the golden ratio and S is a constant, resolving several related conjectures concerning the growth of n(g) . In addition, we show that the proportion of numerical semigroups of genus g satisfying f < 3m approaches 1 as g ->infinity, where m is the multiplicity and f is the Frobenius number.
引用
收藏
页码:634 / 662
页数:29
相关论文
共 8 条
[1]  
BLANCO V, PREPRINT
[2]   Fibonacci-like behavior of the number of numerical semigroups of a given genus [J].
Bras-Amoros, Maria .
SEMIGROUP FORUM, 2008, 76 (02) :379-384
[3]   Towards a better understanding of the semigroup tree [J].
Bras-Amoros, Maria ;
Bulygin, Stanislav .
SEMIGROUP FORUM, 2009, 79 (03) :561-574
[4]   Bounds on the number of numerical semigroups of a given genus [J].
Bras-Amoros, Maria .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (06) :997-1001
[5]   Improved bounds on the number of numerical semigroups of a given genus [J].
Elizalde, Sergi .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (10) :1862-1873
[6]  
KAPLAN N, PREPRINT
[7]  
Rosales JC, 2009, DEV MATH, V20, P1, DOI 10.1007/978-1-4419-0160-6
[8]   Constructing numerical semigroups of a given genus [J].
Zhao, Yufei .
SEMIGROUP FORUM, 2010, 80 (02) :242-254