Data Mining techniques application in Power Distribution utilities

被引:0
作者
Ramos, Sergio [1 ]
Vale, Zita [2 ]
机构
[1] Polytech Inst Porto, Oporto, Portugal
[2] Univ Porto, Oporto, Portugal
来源
2008 IEEE/PES TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION, VOLS 1-3 | 2008年
关键词
classification; clustering; data mining; load profiles; electricity markets;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an electricity medium voltage (MV) consumer characterization framework supported on the data base knowledge discovery process (KDD). Data Mining (DM) techniques are used to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge concerning to the electric energy consumption patterns. In order to form the different customers' classes a hierarchical clustering algorithm is used. The framework includes several steps, starting from the pre-processing data, application of DM algorithms, classification model, and finally, the interpretation of the discovered knowledge. To validate the proposed framework, a case study which includes real databases of MV consumers is used.
引用
收藏
页码:1156 / +
页数:3
相关论文
共 11 条
[1]  
[Anonymous], PES GM 07 IEEE POW E
[2]   Customer characterization options for improving the tariff offer [J].
Chicco, G ;
Napoli, R ;
Postolache, P ;
Scutariu, M ;
Toader, CM .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (01) :381-387
[3]  
Fayyad U. M., 1996, ADV KNOWLEDGE DISCOV, P1, DOI DOI 10.1609/AIMAG.V17I3.1230
[4]   An electric energy consumer characterization framework based on data mining techniques [J].
Figueiredo, V ;
Rodrigues, F ;
Vale, Z ;
Gouveia, JB .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :596-602
[5]  
FIGUEIREDO V, 2003, P ISAP 2003 LEMN GRE
[6]  
FRAWLEY WJ, 1995, KNOWLEDGE DISCOVERY
[7]  
GELLINGS CW, 1998, CIGRE IEEE TECHN SES
[8]  
PITT B, 1999, P IEEE PICA SANT CLA
[9]  
Ramos S., 2006, WSEAS Transactions on Power Systems, V1, P1350
[10]  
RAMOS S, 2006, P INT C KNOWL ENG DE, P107