Fusing Aligned and Non-Aligned Face Information for Automatic Affect Recognition in the Wild: A Deep Learning Approach

被引:51
作者
Kim, Bo-Kyeong [1 ]
Dong, Suh-Yeon [1 ]
Roh, Jihyeon [1 ]
Kim, Geonmin [1 ]
Lee, Soo-Young [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Computat NeuroSyst Lab CNSL, Daejeon, South Korea
来源
PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016) | 2016年
关键词
D O I
10.1109/CVPRW.2016.187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face alignment can fail in real-world conditions, negatively impacting the performance of automatic facial expression recognition (FER) systems. In this study, we assume a realistic situation including non-alignable faces due to failures in facial landmark detection. Our proposed approach fuses information about non-aligned and aligned facial states, in order to boost FER accuracy and efficiency. Six experimental scenarios using discriminative deep convolutional neural networks (DCNs) are compared, and causes for performance differences are identified. To handle non-alignable faces better, we further introduce DCNs that learn a mapping from non-aligned facial states to aligned ones, alignment-mapping networks (AMNs). We show that AMNs represent geometric transformations of face alignment, providing features beneficial for FER. Our automatic system based on ensembles of the discriminative DCNs and the AMNs achieves impressive results on a challenging database for FER in the wild.
引用
收藏
页码:1499 / 1508
页数:10
相关论文
共 48 条
[31]   Collecting Large, Richly Annotated Facial-Expression Databases from Movies [J].
Dhall, Abhinav ;
Goecke, Roland ;
Lucey, Simon ;
Gedeon, Tom .
IEEE MULTIMEDIA, 2012, 19 (03) :34-41
[32]   Automatic facial expression analysis: a survey [J].
Fasel, B ;
Luettin, J .
PATTERN RECOGNITION, 2003, 36 (01) :259-275
[33]   Design of effective neural network ensembles for image classification purposes [J].
Giacinto, G ;
Roli, F .
IMAGE AND VISION COMPUTING, 2001, 19 (9-10) :699-707
[34]   Challenges in representation learning: A report on three machine learning contests [J].
Goodfellow, Ian J. ;
Erhan, Dumitru ;
Carrier, Pierre Luc ;
Courville, Aaron ;
Mirza, Mehdi ;
Hamner, Ben ;
Cukierski, Will ;
Tang, Yichuan ;
Thaler, David ;
Lee, Dong-Hyun ;
Zhou, Yingbo ;
Ramaiah, Chetan ;
Feng, Fangxiang ;
Li, Ruifan ;
Wang, Xiaojie ;
Athanasakis, Dimitris ;
Shawe-Taylor, John ;
Milakov, Maxim ;
Park, John ;
Ionescu, Radu ;
Popescu, Marius ;
Grozea, Cristian ;
Bergstra, James ;
Xie, Jingjing ;
Romaszko, Lukasz ;
Xu, Bing ;
Chuang, Zhang ;
Bengio, Yoshua .
NEURAL NETWORKS, 2015, 64 :59-63
[35]   NEURAL NETWORK ENSEMBLES [J].
HANSEN, LK ;
SALAMON, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) :993-1001
[36]  
Kahou SamiraEbrahimi., 2015, Journal on Multimodal User Interfaces, P1
[37]  
Kan M., 2014, CVPR
[38]  
Kim Bo-Kyeong., 2016, Journal on Multimodal User Interfaces
[39]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[40]  
Kuncheva L.I., 2005, Information Fusion, V6, P3, DOI [10.1016/j.inffus.2004.04.009, https://doi.org/10.1016/j.inffus.2004.04.009]