BIFURCATION VALUES AND MONODROMY OF MIXED POLYNOMIALS

被引:18
作者
Chen, Ying [1 ]
Tibar, Mihai [1 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
singularities of real polynomial maps; fibrations; bifurcation locus; Newton polyhedron; atypical values; regularity at infinity; semi-algebraic Sard type theorem; NEWTON BOUNDARY; MILNOR FIBRATION; SARD THEOREM; INFINITY; TOPOLOGY; HYPERSURFACES; SINGULARITIES; SET;
D O I
10.4310/MRL.2012.v19.n1.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the bifurcation values of real polynomial maps f : R-2n -> R-2, which reflect the lack of asymptotic regularity at infinity. We formulate real counterparts of some structure results, which have been previously proved in case of complex polynomials by Kushnirenko, Nemethi and Zaharia and other authors, emphasizing the typical real phenomena that occur.
引用
收藏
页码:59 / 79
页数:21
相关论文
共 28 条
[1]  
ACAMPO N., 1973, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math., V76, P113
[2]   MILNOR NUMBERS AND THE TOPOLOGY OF POLYNOMIAL HYPERSURFACES [J].
BROUGHTON, SA .
INVENTIONES MATHEMATICAE, 1988, 92 (02) :217-241
[3]  
BROUGHTON SA, 1983, P SYMP PURE MATH, V40, P167
[4]  
Durfee A. H., 1996, PROGR MATH, V162, P345
[5]  
Ha HV., 1984, Acta Math. Vietnam., V9, P21
[6]   NEWTON POLYHEDRA AND MILNOR NUMBERS [J].
KOUCHNIRENKO, AG .
INVENTIONES MATHEMATICAE, 1976, 32 (01) :1-31
[7]  
Kurdyka K, 2000, J DIFFER GEOM, V56, P67
[8]  
Milnor J., 1968, Annals of Mathematics Studies, V61
[9]   MILNOR FIBRATION AT INFINITY [J].
NEMETHI, A ;
ZAHARIA, A .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (03) :323-335
[10]   ON THE BIFURCATION SET OF A POLYNOMIAL FUNCTION AND NEWTON BOUNDARY [J].
NEMETHI, A ;
ZAHARIA, A .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (04) :681-689