Single-Image Blind Deconvolution Using Gradient Saliency Map

被引:0
作者
Di, Xiaoguang [1 ]
Yin, Lei [1 ]
机构
[1] Harbin Inst Technol, Control & Simulat Ctr, Harbin 150080, Heilongjiang, Peoples R China
来源
PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017) | 2017年
关键词
blind deconvolution; sparse regularization; salient detection; gradient map;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image blind deconvolution is one of the most challenging fields in image processing which restores a sharp image from its blurred version. Nowadays blind deconvolution algorithms have made significant progress. However, the restoration of blurred images with little scale edges and periodic textures is still a hard work. To solve this problem, this paper proposes a new normalized sparse regularization blind deconvolution algorithm, which uses a gradient saliency map to prohibit the image small structures on image blurry kernel estimation. Firstly, salient detection is performed to select the important area which conforms with the human vision system and generates a binary mask to screen out useful gradients. Secondly, the normalized sparse regularization blind deconvolution method is applied to obtain accurate blur kernel and recover the sharp image. Finally, the experiment results show that the algorithm can effectively deblur the degraded image on different scenarios.
引用
收藏
页码:5151 / 5156
页数:6
相关论文
共 10 条
[1]   Removing camera shake from a single photograph [J].
Fergus, Rob ;
Singh, Barun ;
Hertzmann, Aaron ;
Roweis, Sam T. ;
Freeman, William T. .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03) :787-794
[2]   A model of saliency-based visual attention for rapid scene analysis [J].
Itti, L ;
Koch, C ;
Niebur, E .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1254-1259
[3]  
Krishnan D., 2009, ADV NEURAL INFORM PR, P1033, DOI DOI 10.1145/1531326.1531402
[4]  
Krishnan D, 2011, PROC CVPR IEEE, P233, DOI 10.1109/CVPR.2011.5995521
[5]  
Levin A, 2009, PROC CVPR IEEE, P1964, DOI 10.1109/CVPRW.2009.5206815
[6]   Total Variation Blind Deconvolution: The Devil is in the Details [J].
Perrone, Daniele ;
Favaro, Paolo .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2909-2916
[7]   Image quality assessment: From error visibility to structural similarity [J].
Wang, Z ;
Bovik, AC ;
Sheikh, HR ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :600-612
[8]   Unnatural L0 Sparse Representation for Natural Image Deblurring [J].
Xu, Li ;
Zheng, Shicheng ;
Jia, Jiaya .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1107-1114
[9]  
Xu L, 2010, LECT NOTES COMPUT SC, V6311, P157
[10]  
Yin L, 2015, CHIN CONTR CONF, P4693, DOI 10.1109/ChiCC.2015.7260364