DIRECT LOCALIZATION IN UNDERWATER ACOUSTICS VIA CONVOLUTIONAL NEURAL NETWORKS: A DATA-DRIVEN APPROACH

被引:1
|
作者
Weiss, Amir [1 ]
Arikan, Toros [1 ]
Wornell, Gregory W. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
来源
2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2022年
关键词
Localization; underwater acoustics; deep neural networks; supervised learning; mean cyclic error; DIRECT POSITION DETERMINATION;
D O I
10.1109/MLSP55214.2022.9943512
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Direct localization (DLOC) methods, which use the observed data to localize a source at an unknown position in a one-step procedure, generally outperform their indirect two-step counterparts (e.g., using time-difference of arrivals). However, underwater acoustic DLOC methods require prior knowledge of the environment, and are computationally costly, hence slow. We propose, what is to the best of our knowledge, the first data-driven DLOC method. Inspired by classical and contemporary optimal model-based DLOC solutions, and leveraging the capabilities of convolutional neural networks (CNNs), we devise a holistic CNN-based solution. Our method includes a specifically-tailored input structure, architecture, loss function, and a progressive training procedure, which are of independent interest in the broader context of machine learning. We demonstrate that our method outperforms attractive alternatives, and asymptotically matches the performance of an oracle optimal model-based solution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Data-driven target localization using adaptive radar processing and convolutional neural networks
    Venkatasubramanian, Shyam
    Gogineni, Sandeep
    Kang, Bosung
    Pezeshki, Ali
    Rangaswamy, Muralidhar
    Tarokh, Vahid
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (10): : 1638 - 1651
  • [2] Data-driven emergence of convolutional structure in neural networks
    Ingrosso, Alessandro
    Goldt, Sebastian
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (40)
  • [3] Data-driven Processing Element for Sparse Convolutional Neural Networks
    Lesage, Xavier
    Merio, Cristiano
    Welzel, Fernando
    de Araujo, Luca Sauer
    Engels, Sylvain
    Fesquet, Laurent
    2024 22ND IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS 2024, 2024, : 143 - 147
  • [4] Data-driven weight initialization strategy for convolutional neural networks
    Narkhede, Meenal
    Mahajan, Shrinivas
    Bartakke, Prashant
    EVOLUTIONARY INTELLIGENCE, 2025, 18 (01)
  • [5] A Data-Driven No-Reference Image Quality Assessment via Deep Convolutional Neural Networks
    Fan, Yezhao
    Zhu, Yuchen
    Zhai, Guangtao
    Wang, Jia
    Liu, Jing
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 361 - 371
  • [6] Data-Driven Template Discovery Using Graph Convolutional Neural Networks
    Joaristi, Mikel
    Purohit, Sumit
    Deshmukh, Rahul
    Chin, George
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2534 - 2538
  • [7] Learning data-driven molecular fingerprints with convolutional neural networks on graphs
    Duvenaud, David
    Maclaurin, Dougal
    Aguilera-Iparraguirre, Jorge
    Bombarelli, Rafael Gomez
    Hirzel, Timothy
    Aspuru-Guzik, Alan
    Adams, Ryan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] On data-driven underwater acoustic direct localization: Design considerations of a deep neural network-based solution
    Weiss, Amir
    Deane, Grant B.
    Singer, Andrew C.
    Wornell, Greg
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 153 (03):
  • [9] Data-Driven Short-Term Voltage Stability Assessment Using Convolutional Neural Networks Considering Data Anomalies and Localization
    Rizvi, Syed Muhammad Hur
    Sadanandan, Sajan K.
    Srivastava, Anurag K.
    IEEE ACCESS, 2021, 9 : 128345 - 128358
  • [10] DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks
    Gopinath, Divya
    Katz, Guy
    Pasareanu, Corina S.
    Barrett, Clark
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS (ATVA 2018), 2018, 11138 : 3 - 19