MULTIPLICATION OPERATORS ON INVARIANT SUBSPACES OF FUNCTION SPACES

被引:0
作者
Yousefi, B. [1 ]
Khoshdel, Sh [1 ]
Jahanshahi, Y. [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
关键词
invariant subspace; Hilbert space of analytic functions; essential spectrum; essential norm; Fredholm operator; multiplication operator; UNIVERSAL INTERPOLATING-SEQUENCES; BANACH-SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-phi be the operator of multiplication by phi on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator M-z, we derive some spectral properties of the multiplication operator M-phi : F -> F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n is an element of {1, 2, ... , +infinity}.
引用
收藏
页码:1463 / 1470
页数:8
相关论文
共 33 条
[1]  
AGRAWAL OP, 1986, PAC J MATH, V121, P1
[2]  
AHERN PR, 1970, J MATH MECH, V19, P963
[3]  
[Anonymous], 1976, LONDON MATH SOC LECT
[4]   INVARIANT SUBSPACES, DILATION THEORY, AND THE STRUCTURE OF THE PREDUAL OF A DUAL ALGEBRA .1. [J].
APOSTOL, C ;
BERCOVICI, H ;
FOIAS, C ;
PEARCY, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :369-404
[5]   FINITE CODIMENSIONAL INVARIANT SUBSPACES OF BERGMAN SPACES [J].
AXLER, S ;
BOURDON, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :805-817
[6]  
AXLER S, 1982, J REINE ANGEW MATH, V336, P26
[7]  
Bercovici H, 1985, 56 CBMSRCSM AM MATH
[8]  
Conway J., 1985, A Course in Functional Analysis
[9]  
Conway JB, 1991, THEORY SUBNORMAL OPE
[10]  
Douglas R. G., 1972, BANACH ALGEBRA TECHN