ON A UNIFORM ESTIMATE FOR THE QUATERNIONIC CALABI PROBLEM

被引:26
作者
Alesker, Semyon [1 ]
Shelukhin, Egor [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
PLURISUBHARMONIC-FUNCTIONS; MANIFOLDS;
D O I
10.1007/s11856-013-0003-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a C-0 a priori bound on the solutions of the quaternionic Calabi-Yau equation (of Monge-Ampere type) on compact HKT manifolds with a locally flat hypercomplex structure. As an intermediate step, we prove a quaternionic version of the Gauduchon theorem.
引用
收藏
页码:309 / 327
页数:19
相关论文
共 18 条
[1]   Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables [J].
Alesker, S .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (01) :1-35
[2]   Quaternionic Monge-AmpSre equation and Calabi problem for HKT-manifolds [J].
Alesker, S. ;
Verbitsky, M. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) :109-138
[3]  
Alesker S., 2003, J. Geom. Anal, V13, P205, DOI DOI 10.1007/BF02930695
[4]  
Alesker S., 2011, PREPRINT
[5]   Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry [J].
Alesker, Semyon ;
Verbitsky, Misha .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) :375-399
[6]  
[Anonymous], 1998, CLASSICS MATH
[7]  
[Anonymous], 1988, PURE APPL MATH
[8]  
[Anonymous], 1992, TRANSLATIONS MATH MO
[9]   On uniform estimate in Calabi-Yau theorem [J].
Blocki, Z .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 :244-247
[10]   A NOTE ON HYPERHERMITIAN 4-MANIFOLDS [J].
BOYER, CP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :157-164