The Darboux transformation of the Kundu-Eckhaus equation

被引:98
作者
Qiu, Deqin [1 ]
He, Jingsong [1 ]
Zhang, Yongshuai [2 ]
Porsezian, K. [3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[3] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2180期
关键词
Darboux transformation; Kundu-Eckhaus equation; rogue wave; ROGUE WAVES; SOLITON; MODULATION; MECHANISMS;
D O I
10.1098/rspa.2015.0236
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We construct an analytical and explicit representation of the Darboux transformation (DT) for the Kundu-Eckhaus (KE) equation. Such solution and n-fold DT Tn are given in terms of determinants whose entries are expressed by the initial eigenfunctions and 'seed' solutions. Furthermore, the formulae for the higher order rogue wave (RW) solutions of the KE equation are also obtained by using the Taylor expansion with the use of degenerate eigenvalues lambda(2k-1) -> lambda(1) =-1/2a + beta c(2) + ic, k = 1, 2, 3,..., all these parameters will be defined latter. These solutions have a parameter beta, which denotes the strength of the non-Kerr (quintic) nonlinear and the self-frequency shift effects. We apply the contour line method to obtain analytical formulae of the length and width for the first-order RW solution of the KE equation, and then use it to study the impact of the beta on the RW solution. We observe two interesting results on localization characters of beta, such that if beta is increasing from a/2: (i) the length of the RW solution is increasing as well, but the width is decreasing; (ii) there exist a significant rotation of the RW along the clockwise direction. We also observe the oppositely varying trend if beta is increasing to a/2. We define an area of the RW solution and find that this area associated with c = 1 is invariant when a and beta are changing.
引用
收藏
页数:20
相关论文
共 60 条
  • [1] Ablowitz M. J., 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering, V149, DOI 10.1017/CBO9780511623998
  • [2] Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
  • [3] Recent progress in investigating optical rogue waves
    Akhmediev, N.
    Dudley, J. M.
    Solli, D. R.
    Turitsyn, S. K.
    [J]. JOURNAL OF OPTICS, 2013, 15 (06)
  • [4] Waves that appear from nowhere and disappear without a trace
    Akhmediev, N.
    Ankiewicz, A.
    Taki, M.
    [J]. PHYSICS LETTERS A, 2009, 373 (06) : 675 - 678
  • [5] Akhmediev N., 1997, Solitons: Nonlinear Pulses and Beams
  • [6] Rogue wave triplets
    Ankiewicz, Adrian
    Kedziora, David J.
    Akhmediev, Nail
    [J]. PHYSICS LETTERS A, 2011, 375 (28-29) : 2782 - 2785
  • [7] Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions
    Bailung, H.
    Sharma, S. K.
    Nakamura, Y.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [8] Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime
    Baronio, Fabio
    Conforti, Matteo
    Degasperis, Antonio
    Lombardo, Sara
    Onorato, Miguel
    Wabnitz, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [9] Rogue Waves Emerging from the Resonant Interaction of Three Waves
    Baronio, Fabio
    Conforti, Matteo
    Degasperis, Antonio
    Lombardo, Sara
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [10] NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1.
    CALOGERO, F
    ECKHAUS, W
    [J]. INVERSE PROBLEMS, 1987, 3 (02) : 229 - 262