Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs

被引:130
作者
Marquez, Ricardo [1 ]
Pedro, Hugo T. C. [2 ,3 ,4 ]
Coimbra, Carlos F. M. [2 ,3 ,4 ]
机构
[1] Univ Calif Merced, Sch Engn, Mech Engn & Appl Mech Program, Merced, CA 95343 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, Jacobs Sch Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Ctr Excellence Renewable Energy Integrat, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Solar forecasting; Hybrid methods; Stochastic learning; Remote sensing; Artificial neural networks; NEURAL-NETWORKS; RADIATION; IRRADIANCE;
D O I
10.1016/j.solener.2013.02.023
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work describes a new hybrid method that combines information from processed satellite images with Artificial Neural Networks (ANNs) for predicting global horizontal irradiance (GHI) at temporal horizons of 30, 60, 90, and 120 min. The forecast model is applied to GHI data gathered from two distinct locations (Davis and Merced) that represent well the geographical distribution of solar irradiance in the San Joaquin Valley. The forecasting approach uses information gathered from satellite image analysis including velocimetry and cloud indexing as inputs to the ANN models. To the knowledge of the authors, this is the first attempt to hybridize stochastic learning and image processing approaches for solar irradiance forecasting. We compare the hybrid approaches using standard error metrics to quantify the forecasting skill for the several time horizons considered. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:176 / 188
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 2010, INT REN RES OP REQ G
[2]   Online short-term solar power forecasting [J].
Bacher, Peder ;
Madsen, Henrik ;
Nielsen, Henrik Aalborg .
SOLAR ENERGY, 2009, 83 (10) :1772-1783
[3]   NEURAL NETWORKS AND THEIR APPLICATIONS [J].
BISHOP, CM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (06) :1803-1832
[4]   A METHOD FOR THE DETERMINATION OF THE GLOBAL SOLAR-RADIATION FROM METEOROLOGICAL SATELLITE DATA [J].
CANO, D ;
MONGET, JM ;
ALBUISSON, M ;
GUILLARD, H ;
REGAS, N ;
WALD, L .
SOLAR ENERGY, 1986, 37 (01) :31-39
[5]   Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks [J].
Cao, Jiacong ;
Lin, Xingchun .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (06) :1396-1406
[6]   Solar energy assessment using remote sensing technologies [J].
Hammer, A ;
Heinemann, D ;
Hoyer, C ;
Kuhlemann, R ;
Lorenz, E ;
Müller, R ;
Beyer, HG .
REMOTE SENSING OF ENVIRONMENT, 2003, 86 (03) :423-432
[7]   Short-term forecasting of solar radiation:: A statistical approach using satellite data [J].
Hammer, A ;
Heinemann, D ;
Lorenz, E ;
Lückehe, B .
SOLAR ENERGY, 1999, 67 (1-3) :139-150
[8]  
Hammer A., 1999, TEUMETSAT MET SAT DA, P331
[9]  
Hammer A, 2001, 2001 EUMETSAT MET SA, P677
[10]   Quantifying PV power Output Variability [J].
Hoff, Thomas E. ;
Perez, Richard .
SOLAR ENERGY, 2010, 84 (10) :1782-1793