Artificial intelligence-based modeling and optimization of microbial electrolysis cell-assisted anaerobic digestion fed with alkaline-pretreated waste-activated sludge
被引:25
作者:
Nguyen, Van Tinh
论文数: 0引用数: 0
h-index: 0
机构:
Lac Hong Univ, Fac Food Sci & Engn, Buu Long Ward, 10 Huynh Nghe St, Bien Hoa City, Dong Nai Provin, VietnamLac Hong Univ, Fac Food Sci & Engn, Buu Long Ward, 10 Huynh Nghe St, Bien Hoa City, Dong Nai Provin, Vietnam
Nguyen, Van Tinh
[1
]
Ta, Qui Thanh Hoai
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Phys, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South KoreaLac Hong Univ, Fac Food Sci & Engn, Buu Long Ward, 10 Huynh Nghe St, Bien Hoa City, Dong Nai Provin, Vietnam
Ta, Qui Thanh Hoai
[2
]
Nguyen, Phan Khanh Thinh
论文数: 0引用数: 0
h-index: 0
机构:
Gachon Univ, Dept Chem & Biol Engn, Seongnam Si 13120, Gyeonggi Do, South KoreaLac Hong Univ, Fac Food Sci & Engn, Buu Long Ward, 10 Huynh Nghe St, Bien Hoa City, Dong Nai Provin, Vietnam
Nguyen, Phan Khanh Thinh
[3
]
机构:
[1] Lac Hong Univ, Fac Food Sci & Engn, Buu Long Ward, 10 Huynh Nghe St, Bien Hoa City, Dong Nai Provin, Vietnam
[2] Gachon Univ, Dept Phys, 1342 Seongnamdaero, Seongnam Si 13120, Gyeonggi Do, South Korea
[3] Gachon Univ, Dept Chem & Biol Engn, Seongnam Si 13120, Gyeonggi Do, South Korea
Microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) is a promising emerging strategy to enhance simultaneously waste treatment and biomethane recovery from various biowastes, particularly waste-activated sludge (WAS). However, MEC-AD is still in the early stages of development, with numerous experimental studies but no modeling or optimization. Thus, to provide an effective modeling and optimization tool for this process, this study proposed applying artificial intelligence for the first time. The literature-based experimental data of MEC-AD fed with alkaline-pretreated waste-activated sludge (al-WAS) were used for this purpose. Accordingly, a two-hidden-layer artificial neural network (ANN) with topology 2-25-34-6, obtained from the response surface methodology, showed the best agreement between actual and predicted data with a low mean squared error of 0.0579 and a high R-value of 0.9870. This best ANN model was then optimized by particle swarm optimization. As a result, an Eapp of 0.63 V was found to be optimal for al-WAS-fed MEC-AD with a highest net energy output of 41.3 KJ/L-reactor (-2.6 MJ/kg-WAS) and highest net monetary value of 0.72 $/L-reactor (-45 $/kg-WAS), which enhanced around 160 % and 300 % compared to AD alone. These findings can support decision-making for managers and operators in wastewater treatment, biomass waste management, and renewable energy sectors.
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Fisher, Oliver J.
;
Watson, Nicholas J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Watson, Nicholas J.
;
Porcu, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, England
Univ Nottingham, Energy Innovat & Collaborat, Jubilee Campus, Nottingham NG8 1BB, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Porcu, Laura
;
Bacon, Darren
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Bacon, Darren
;
Rigley, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Rigley, Martin
;
Gomes, Rachel L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Fisher, Oliver J.
;
Watson, Nicholas J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Watson, Nicholas J.
;
Porcu, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, England
Univ Nottingham, Energy Innovat & Collaborat, Jubilee Campus, Nottingham NG8 1BB, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Porcu, Laura
;
Bacon, Darren
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Bacon, Darren
;
Rigley, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Lindhurst Engn Ltd, Midland Rd, Sutton In Ashfield NG17 5GS, Notts, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England
Rigley, Martin
;
Gomes, Rachel L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, EnglandUniv Nottingham, Fac Engn, Food Water Waste Res Grp, Univ Pk, Nottingham NG7 2RD, England