Colorings of plane graphs with no rainbow faces

被引:12
作者
Jungic, Veselin
Kral, Daniel
Skrekovski, Riste
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-18000 Prague, Czech Republic
[3] Univ Ljubljana, Dept Math, Ljubljana 11111, Slovenia
[4] Simon Fraser Univ, Pacific Inst Math Sci, Burnaby, BC V5A 1S6, Canada
关键词
D O I
10.1007/s00493-006-0012-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each n-vertex plane graph with girth g >= 4 admits a vertex coloring with at least [n/2] +1 colors with no rainbow face, i.e., a face in which all vertices receive distinct colors. This proves a conjecture of Ramamurthi and West. Moreover, we prove for plane graph with girth g >= 5 that there is a vertex coloring with at least [(g-3/g-2)n - (g-7/2(g-2))] if g is odd and [ (g-3/g-2)n - (g-6/2(g-2))] if g is even. The bounds are tight for all pairs of n and g with g >= 4 and n >= 5g/2-3.
引用
收藏
页码:169 / 182
页数:14
相关论文
共 21 条
[2]   On a generalized anti-Ramsey problem [J].
Axenovich, M ;
Kündgen, A .
COMBINATORICA, 2001, 21 (03) :335-349
[3]  
BERGE C, 1958, CR HEBD ACAD SCI, V247, P258
[4]   MAXIMAL ANTIRAMSEY GRAPHS AND THE STRONG CHROMATIC NUMBER [J].
BURR, SA ;
ERDOS, P ;
GRAHAM, RL ;
SOS, VT .
JOURNAL OF GRAPH THEORY, 1989, 13 (03) :263-282
[5]   Disconnected 2-factors in planar cubic bridgeless graphs [J].
Diwan, AA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) :249-259
[6]   Coloring face hypergraphs on surfaces [J].
Dvorák, Z ;
Král, D ;
Skrekovski, R .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (01) :95-110
[7]  
Dvorak Z., 2001, ELECTRON J COMB, V8, pR35
[8]  
Grotzsch H., 1959, Halle-Wittenberg Math.-Natur. Reihe, V8, P109
[9]   Edge-colorings of complete graphs that avoid polychromatic trees [J].
Jiang, T ;
West, DB .
DISCRETE MATHEMATICS, 2004, 274 (1-3) :137-145
[10]   Edge-colorings with no large polychromatic stars [J].
Jiang, T .
GRAPHS AND COMBINATORICS, 2002, 18 (02) :303-308