Conformal invariants associated to a measure

被引:23
作者
Chang, SYA [1 ]
Gursky, MJ
Yang, P
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1073/pnas.0510814103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, we study some conformal invariants of a Riemannian manifold (M-n, g) equipped with a smooth measure m. In particular, we show that there is a natural definition of the Ricci and scalar curvatures associated to such a space, both of which are conformally invariant. We also adapt the methods of Fefferman and Graham [Fefferman, C. & Graham, C. R. (1985) Asterisque, Numero Hors Serie, 95-116] and Graham, Jenne, Mason, and Sparling [Graham, C. R., Jenne, R., Mason, L. J., & Sparling, G. A. J. (1992) J. London Math. Soc. 46, 557-565] to construct families of conformally covariant operators defined on these spaces. Certain variational problems in this setting are considered, including a generalization of the Einstein-Hilbert action.
引用
收藏
页码:2535 / 2540
页数:6
相关论文
共 15 条
[1]  
Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI DOI 10.1007/BFB0075847
[2]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[3]   AN OBSTRUCTION TO THE EXISTENCE OF EINSTEIN KAHLER-METRICS [J].
FUTAKI, A .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :437-443
[4]   CONFORMALLY INVARIANT POWERS OF THE LAPLACIAN .1. EXISTENCE [J].
GRAHAM, CR ;
JENNE, R ;
MASON, LJ ;
SPARLING, GAJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 :557-565
[5]   Isoperimetry of waists and concentration of maps [J].
Gromov, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :178-215
[6]   CURVATURE FUNCTIONS FOR COMPACT 2-MANIFOLDS [J].
KAZDAN, JL ;
WARNER, FW .
ANNALS OF MATHEMATICS, 1974, 99 (01) :14-47
[7]   Some geometric properties of the Bakry-Emery-Ricci tensor [J].
Lott, J .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :865-883
[8]  
Lott J., 2004, RICCI CURVATURE METR
[9]  
LOTT J, 2005, REMARK SCALAR CURVAT
[10]  
Morgan F., 2005, NOT AM MATH SOC, V52, P853