A fast multiscale Kantorovich method for weakly singular integral equations

被引:3
作者
Long, Guangqing [1 ]
Wu, Weifen [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Guangxi Normal Coll, Dept Math, Nanning 530001, Peoples R China
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Integral equations; Kantorovich method; Iterated method; Superconvergence; Fast method; Weakly singular kernel; WAVELET GALERKIN METHODS;
D O I
10.1007/s11075-012-9610-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the idea of Kantorovich regularization to develop the fast multiscale Kantorovich method and the fast iterated multiscale Kantorovich method. For some kinds of weakly singular integral equations with nonsmooth inhomogeneous terms, we show that our two proposed methods can still obtain the optimal order of convergence and superconvergence order, respectively. Numerical examples are given to demonstrate the efficiency of the methods.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条
  • [41] ERROR ANALYSIS OF A JACOBI MODIFIED PROJECTION-TYPE METHOD FOR WEAKLY SINGULAR VOLTERRA–HAMMERSTEIN INTEGRAL EQUATIONS
    Bouda, Hamza
    Allouch, Chafik
    Kant, Kapil
    El Allali, Zakaria
    [J]. Electronic Transactions on Numerical Analysis, 2024, 60 : 446 - 470
  • [42] Fast Solution of Volume-Surface Integral Equations for Multiscale Structures
    He, Yuan
    Li, Jian Feng
    Jing, Xiao Jun
    Tong, Mei Song
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (12) : 7649 - 7654
  • [43] A fast collocation method for solving the weakly singular fractional integro-differential equation
    Taghipour, M.
    Aminikhah, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
  • [44] A novel Jacob spectral method for multi-dimensional weakly singular nonlinear Volterra integral equations with nonsmooth solutions
    Zaky, Mahmoud A.
    Ameen, Ibrahem G.
    [J]. ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 2623 - 2631
  • [45] An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels
    Wang, Lina
    Tian, Hongjiong
    Yi, Lijun
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 218 - 232
  • [46] Galerkin spectral method for linear second-kind Volterra integral equations with weakly singular kernels on large intervals
    Remili, Walid
    Rahmoune, Azedine
    Li, Chenkuan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2329 - 2344
  • [47] Superconvergence of interpolated collocation solutions for weakly singular Volterra integral equations of the second kind
    Qiumei Huang
    Min Wang
    [J]. Computational and Applied Mathematics, 2021, 40
  • [48] Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations
    Pedas, A
    Vainikko, G
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (02) : 395 - 413
  • [49] Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind
    Okayama, Tomoaki
    Matsuo, Takayasu
    Sugihara, Masaaki
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 1211 - 1227
  • [50] Efficient Evaluation of Weakly Singular Integrals Arising From Electromagnetic Surface Integral Equations
    Sheng, Wei Tian
    Zhu, Zhen Ying
    Yang, Kuo
    Tong, Mei Song
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (06) : 3377 - 3381