First Passage Percolation and Escape Strategies

被引:2
作者
Andjel, Enrique D. [1 ]
Vares, Maria E. [2 ]
机构
[1] Univ Aix Marseille, LATP URA CNRS 225, F-13453 Marseille 13, France
[2] Univ Fed Rio de Janeiro, Inst Matemat, DME, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
first passage percolation; escape strategy; geodesic; 1ST-PASSAGE PERCOLATION; TIME CONSTANT;
D O I
10.1002/rsa.20548
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Consider first passage percolation on Z(d) with passage times given by i.i.d. random variables with common distribution F. Let t(pi)(u,v) be the time from u to v for a path pi and t(u,v) the minimal time among all paths from u to v. We ask whether or not there exist points x,y is an element of Z(d) and a semi-infinite path pi = (y(0) = y,y1, ...) such that t(pi) (y, y(n+1)) < t(x,y(n)) for all n. Necessary and sufficient conditions on F are given for this to occur. When the support of F is unbounded, we also obtain results on the number of edges with large passage time used by geodesics. (c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 6 条
  • [1] ON THE CONTINUITY OF THE TIME CONSTANT OF 1ST-PASSAGE PERCOLATION
    COX, JT
    KESTEN, H
    [J]. JOURNAL OF APPLIED PROBABILITY, 1981, 18 (04) : 809 - 819
  • [2] 1ST-PASSAGE PERCOLATION, NETWORK FLOWS AND ELECTRICAL RESISTANCES
    GRIMMETT, G
    KESTEN, H
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (03): : 335 - 366
  • [3] Kesten H, 2003, PROG PROBAB, V54, P93
  • [4] Marchand R, 2002, ANN APPL PROBAB, V12, P1001
  • [5] RICHARDSON D, 1973, P CAMB PHILOS SOC, V74, P515
  • [6] VAN DEN BERG J., 1993, Ann. Appl. Probab., V3, P56