Zernike wavefront sensor (ZWFS) development for Low Order Wavefront Sensing (LOWFS)

被引:2
|
作者
Wang, Xu [1 ]
Shi, Fang [1 ]
Wallace, J. Kent [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
来源
SPACE TELESCOPES AND INSTRUMENTATION 2016: OPTICAL, INFRARED, AND MILLIMETER WAVE | 2016年 / 9904卷
关键词
Wavefront sensing; Zernike phase contrast; WFIRST; LOWFS;
D O I
10.1117/12.2231252
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
ZWFS is known to be photon noise optimal for measuring low order aberrations. Recently, ZWFS was selected as the baseline LOWFS technology on WFIRST for its sensitivity, accuracy, and its ease of integration with the starlight rejection mask. In this paper, we present the development of ZWFS sensor, including the algorithm description, sensitivity analysis, and some early experimental model validation results from a fabricated ZWFS phase mask on a stand-alone LOWFS testbed.
引用
收藏
页数:9
相关论文
共 43 条
  • [21] The AOLI low-order non-linear curvature wavefront sensor: Laboratory and on-sky results
    Crass, Jonathan
    King, David
    Mackay, Craig
    ADAPTIVE OPTICS SYSTEMS IV, 2014, 9148
  • [22] A Phase-shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System
    Wallace, J. Kent
    Crawford, Sam
    Loya, Frank
    Moore, James
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [23] Fast and accurate wavefront sensing algorithm of Shack-Hartmann sensor for adaptive optics
    Yoo, Jae Eun
    Youn, Sung Kie
    ASTRONOMICAL ADAPTATIVE OPTICS SYSTEMS AND APPLICATIONS III, 2007, 6691
  • [24] Coherence-gated wavefront sensing using a virtual Shack-Hartmann sensor
    Rueckel, Markus
    Denk, Winfried
    ADVANCED WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS IV, 2006, 6306
  • [25] Direct multiplexing of low order aberration modes in a photopolymer-based holographic element for analog holographic wavefront sensing
    Branigan, Emma
    Martin, Suzanne
    Sheehan, Matthew
    Murphy, Kevin
    ENVIRONMENTAL EFFECTS ON LIGHT PROPAGATION AND ADAPTIVE SYSTEMS IV, 2021, 11860
  • [26] Wavefront sensing and control in space-based coronagraph instruments using Zernike's phase-contrast method
    Ruane, Garreth
    Wallace, J. Kent
    Steeves, John
    Prada, Camilo Mejia
    Seo, Byoung-Joon
    Bendek, Eduardo
    Coker, Carl
    Chen, Pin
    Crill, Brendan
    Jewell, Jeff
    Kern, Brian
    Marx, David
    Poon, Phillip K.
    Redding, David
    Riggs, A. J. Eldorado
    Siegler, Nicholas
    Zimmer, Robert
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (04)
  • [27] Low Light Level Quadriwave Lateral Shearing Interferometer for In Situ Wavefront Sensing
    Catanzaro, Brian
    Wattellier, Benoit
    Boldyreva, Ekaterina
    Young, Eliot
    Lewis, Michael
    Juergens, Jeffrey
    Woodruff, Robert
    Hoffmann, Monica
    ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
  • [28] Wavefront sensing for low-coherent sources through spatial coherence revival
    Panchal, Pramod
    Naik, Dinesh N.
    Narayanamurthy, C. S.
    ENGINEERING RESEARCH EXPRESS, 2019, 1 (02):
  • [29] Review of the latest developments in fast low noise detectors for wavefront sensing in the visible
    Adkins, Sean M.
    ADAPTIVE OPTICS SYSTEMS IV, 2014, 9148
  • [30] Performance of a complementary metal-oxide-semiconductor sensor for laser guide star wavefront sensing
    Ke, Zibo
    Bustos, Felipe Pedreros
    Atwood, Jenny
    Costille, Anne
    Dohlen, Kjetil
    El Hadi, Kacem
    Gach, Jean-Luc
    Herriot, Glen
    Hubert, Zoltan
    Jouve, Pierre
    Rabou, Patrick
    Veran, Jean-Pierre
    Wang, Lianqi
    Fusco, Thierry
    Neichel, Benoit
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2022, 8 (02)